Diabetes researchers pioneer islet cell xenotransplantation in primate studies

A team of researchers from the University of Alberta, the Yerkes National Primate Research Center of Emory University and the Emory Transplant Center has successfully transplanted insulin-producing neonatal porcine islet cells into monkeys, a procedure the researchers say represents a promising intermediate solution to the critical supply problem in clinical islet cell transplantation.

“Our work at the U of A and Emory, along with recent work at the University of Minnesota, is very exciting and shows that xenotransplantation in humans may soon be possible, thus solving the islet supply problem,” says one of the study authors Ray Rajotte, a professor of Surgery at the University of Alberta.

The paper appeared in an advanced on-line publication of Nature Medicine, February 26, entitled “Long-term survival of neonatal porcine islets in non-human primates by targeting co-stimulation pathways.” The work follows on the heels of similar work published last week by University of Minnesota researchers; those researchers used islets isolated from adult pig pancreases.

Neonatal islets were produced in Edmonton using a procedure Drs. Greg Korbutt and Rajotte developed in 1995. The pig islets were sent to the Yerkes Research Center for transplantation into diabetic rhesus macaques using an anti-rejection protocol developed by Drs. Christian Larsen and Kenneth Cardona of the Yerkes Research Center and the Emory Transplant Center. The isolation method developed by the U of A researchers is simple and reproducible with the neonatal pig islets having some growth potential post-transplant, considered a major advantage over adult pig islets.

The diabetic animals were treated with a CD28/CD154 co-stimulation blockade-based immunosuppressive regimen, and achieved sustained insulin independence (median survival >140 days with one animal now at 300 days) without evidence of porcine endogenous retrovirus (PERV) dissemination. “This represents a major step forward and proves neonatal porcine islets can correct diabetes long-term in primates,” said Drs. Korbutt and Rajotte.

“To meet the needs of the millions suffering from type 1 diabetes, we must find new donor sources to allow large-scale application of islet cell transplantation in humans,” said Dr. Larsen. “While there is much work to be done these studies suggest that the rejection response to porcine islets can be surmounted.”

“The next step is to prove that these neonatal porcine islet cells could become a source for human transplantation,” said Dr. Rajotte. “It’s hoped that within the next three to five years, we will be transplanting patients with pig islets once we prove that it is safe.”

Using a relatively simple and reproducible method of obtaining large numbers of islets from neonatal pig pancreata developed at the U of A, the researchers then transplanted islets comprised of endocrine and endocrine precursor cells into the monkeys. In vivo, these cells have been shown to proliferate, differentiate and reverse hyperglycemia in immunodeficient diabetic mice and allogeneic out-bred pigs.

However, humans and Old World primates have naturally occurring antibodies that are directed against antigens that can cause hyperacute or acute humoral rejection. To combat that, the researchers administered an anti-IL-2 receptor and anti-CD154 (H106) antibody, while maintaining immunosuppression using sirolimus and belatacept (a second-generation high affinity derivative of CTLA4-Ig)9-11 on diabetic rhesus macaques transplanted with neonatal porcine islets.

Media Contact

Michael Robb EurekAlert!

More Information:

http://www.ualberta.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors