Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes involved in cell growth and cell division identified

23.02.2006


A recent study shows that hundreds of genes contribute to cell growth and cell division. For the first time these genes, many of which are potential contributors to cancer, have been mapped in a single systematic study.



The group led by Professor Jussi Taipale (University of Helsinki and National Public Health Institute of Finland) has identified genes contributing to cell growth and cell division by systematic silencing of most of the genes in the fruit fly, Drosophila melanogaster. The results are published in the February 23. issue of the journal Nature.

The group of Jussi Taipale belongs to the Molecular and Cancer Biology Research Program of the Faculty of Medicine of the University of Helsinki, and the Department of Molecular Medicine of the National Public Health Institute, Finland. The group is part of the Finnish Academy Centre of Excellence for the Translational Genome-Scale Biology.


Drosophila cells are an excellent model system to also understand the regulation of growth in human cells as the core machinery involved in this process is very similar in all multicellular organisms from insects to humans. Because the regulation of cell growth is central for embryonic development as well as cancer, it is highly important to have a holistic view on these processes.

This study belongs to the emerging field of systems biology, which aims to a comprehensive understanding of cellular mechanisms by carrying out large-scale experiments and combining the data using bioinformatics. The screening of the genes was performed in High Throughput Center of the University of Helsinki.

The genome sequencing projects have revealed a large number of genes with unknown functions. The current study lead by professor Taipale identified a number of such functionally unannotated genes in addition to the identification of the majority of known growth regulators. This set of genes provides an excellent starting point for future studies concentrating on the interactions between genes involved in cell growth.

The research was performed by Mikael Björklund, Minna Taipale, Markku Varjosalo, Juha Saharinen, Juhani Lahdenperä, and Jussi Taipale. This study was financed by the Finnish Academy, Biocentrum Helsinki, University of Helsinki, The Sigrid Juselius Foundation, The Finnish Cultural Foundation, The Maud Kuistila Memorial Foundation and the Finnish Cancer Organisations.

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>