Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scattering of hydrogen makes calculation easier

22.02.2006


Leiden chemists in Science: Chemical reaction between hydrogen molecule and metal surface straightforward to calculate



The chemical reaction of hydrogen molecules (H2) with a platinum surface can be calculated much more straightforwardly than many researchers to date had thought. This is encouraging for research into hydrogen as a clean fuel and heterogeneous catalysis, which is where the reactions of molecules to metal surfaces plays a significant role. Chemists can now test theories on a broad scale which describe the interaction of molecules with metal surfaces.

Born-Oppenheimer


The Leiden theoretical chemists Ernst Pijper, Roar Olsen and Geert-Jan Kroes, together with colleagues from Amsterdam and from Spain, demonstrated that the Born-Oppenheimer approach can be used in predicting the reaction of hydrogen molecules with a metal surface. This is an approach which considerably simplifies chemical calculations by splitting them in two. A heated debate is currently raging on the applicability of the Born-Oppenheimer approach to reactions of molecules with a metal surface - a class of reactions which is very important in this application.

’Hot results’

The researchers published their findings last Thursday on the site of Science Express. This site publishes on the web a number of what they call hot results, sometimes weeks before they appear in the journal Science. The Born-Oppenheimer approach can be used, according to the researchers in their article, because a hydrogen molecule which is fired at a platinum surface, first splits into two atoms or is scattered at the surface before any strong interaction with the platinum takes place.

Complicated

Chemical reactions are generally so complicated that it is difficult to make predictions using quantum mechanical calculations, the specialism of theoretical chemistry. The Born-Oppenheimer approach is a useful tool for making these chemical calculations.

Born and Oppenheimer in 1927 postulated the idea that you can split a chemical calculation in two. First you solve the movement of the electrons and then the movement of the atomic nuclei which are so much heavier and slower than electrons that you can imagine they are standing still in comparison.

This makes the calculation much easier, and the Born-Oppenheimer approach is then also a welcome tool for predicting the progress of chemical reactions of complex systems. It works particularly well in calculating the behaviour of many gas phase reactions.

Out of step

The Born-Oppenheimer approach can only be applied if the reaction processes are adiabatic, which means that the electrons follow the movements of the nuclei and do not get out of step. And a lot of reactions of molecules with a metal surface are not adiabatic.

It has been shown for a number of molecules investigated to date which have been fired at a metal surface, that they already form a strong bond with the surface before they dissociate or are scattered. The consequence is that the molecules affect the metal surface, by forming so-called electron-hole pairs. This process is non-adiabatic; the electrons no longer follow the movement of the nuclei, and the Born-Oppernheimer approach cannot therefore be used.

Firing

Other molecules, like nitrogen, which when stretched like to take up electrons, can, if they are fired in a highly excited state at a metal surface that weakly binds electrons, shoot electrons out of a metal surface. This case also constitutes a breakdown of the Born-Oppenheimer approach.

But, based on calculations and experiments, the three Leiden researchers and their colleagues have been able to show that hydrogen molecules behave very differently if they are fired at a metal surface.

Back-scattering

At first, hydrogen molecules split into two atoms, or are back-scattered to the platinum surface before they form the strong bond with the metal whereby electron-hole pairs can be formed.

Secondly, a hydrogen molecule has a low electron affinity, which means that it does not readily take up an electron. Therefore, it does not tend to ’take’ an electron of the metal far from the surface. So, here too there is no risk of forming electron-hole pairs.

The reaction of molecular hydrogen with a platinum surface, and the scattering of the molecule on the surface is then an adiabatic process, and the Born-Oppenheimer approach can readily be applied to this class of reactions.

Hydrogen economy

‘It is not the case that hydrogen economy will be a fact next year as a result of this discovery,’ says Prof. dr. Geert-Jan Kroes, who is conducting fundamental research into hydrogen as a source of clean energy, and who transformed his faculty into a hydrogen plaza on the Science Day in 2005. ’But it is encouraging, because some hydrogen storage systems are based on the disassociation of hydrogen, that is the breaking of the hydrogen-hydrogen bond. Sometimes a metal is added, such as palladium. And disassociation can be described with the Born-Oppenheimer approach. Platinum is not a candidate for promoting the storage of hydrogen. We do know now that a whole class of reactions, particularly dissociation of hydrogen on metal surfaces, can be solved simply, so that we can conduct large scale testing of theories which describe the interaction of molecules with metal surfaces.‘

Hilje Papma | alfa
Further information:
http://research.leidenuniv.nl/

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>