Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered mouse mimics cognitive aspects of schizophrenia

16.02.2006


Researchers have developed a mouse strain in which the abnormal activity of the dopamine machinery in a specific part of the brain causes cognitive and behavioral impairments mimicking those in human schizophrenics.



The achievement is important, because creating an animal model of any schizophrenic characteristics has not been done before. And schizophrenia’s genetic and physiological complexities have seriously hindered efforts to understand the disorder.

Dr.s Christoph Kellendonk, Eleanor H. Simpson, Eric R. Kandel and colleagues reported their development of the mouse model in an article in the February 16, 2006, issue of Neuron.


In a preview of the study in the same issue of Neuron, neuroscientist Solomon Snyder wrote that the researchers’ findings--along with studies implicating specific genes in schizophrenia--"afford a basis for optimism" that the engineered mice could provide an animal model for schizophrenia. "In this case, the transgenic mice developed by Kellendonk and colleagues may provide a valuable tool for understanding this most malignant of mental disorders," wrote Snyder.

Kellendonk and his colleagues based their experiments on a widely accepted theory that hyperactivity in the brain’s dopamine machinery plays a central role in schizophrenia. Dopamine is a major neurotransmitter in the brain--a chemical messenger that one neuron launches at its neighbor to trigger a nerve impulse in the receiving neuron.

The major antipsychotic drugs are believed to "dial down" the dopamine machinery by blocking receptors for dopamine on the surface of neurons. Also, amphetamines, which release dopamine, are known to aggravate schizophrenic symptoms.

The researchers also based their experiments on evidence that abnormalities in the brain region known as the striatum can affect cognitive function in schizophrenics--by indirectly influencing the prefrontal cortex, a major center for cognitive function.

To mimic the hyperactive dopamine machinery, the researchers created a genetically altered mouse strain in which dopamine receptors were overexpressed only in the striatum. What’s more, they engineered the mouse strain so that they could shut down this overexpression by giving the mice the antibiotic doxycycline.

The researchers found that the engineered animals showed no difference from normal mice in their general cognitive functioning, activity level, sensorimotor functioning, or anxiety.

However, the mice did show the same kinds of specific cognitive deficits seen in human schizophrenics. In tests using mazes, the animals showed deficits in "working memory"--the temporary storage of information required for a task. The animals also showed poorer behavioral flexibility; they were less able than normal mice to reverse their association of a particular odor with a reward.

Biochemical analyses of the animals’ brains revealed that the excess dopamine receptor activity in the striatum contributed to abnormal prefrontal cortical function.

Importantly, found the researchers, they could not reverse these cognitive deficits by using the antibiotic to damp down the dopamine machinery. This finding suggests that the effect of the abnormal dopamine machinery was developmental, they said.

"If increased activation of [dopamine] receptors indeed contributes to the cognitive deficits of patients with schizophrenia, our data could explain why antipsychotics do not greatly ameliorate cognitive deficits," wrote the researchers. "The physiological alterations that are responsible for cognitive deficits may be present long before the first psychotic episode, when treatment usually commences. Thus, treatment with typical antipsychotics may be too late to reverse the physiological alterations that are responsible for the cognitive deficits."

The researchers cautioned that "Rodent models of schizophrenia have significant limitations. The neuronal circuits affected in people are more complex than the analogous circuits in rodents. In particular, the relative size of the prefrontal cortex that is involved in the cognitive deficits is much smaller in rodents than in primates. Some of the cognitive symptoms such as hallucinations or delusions are impossible to address.

"However, rodent models have the advantage of allowing direct tests of cause-effect relationships for specific aspects of the disease, such as some of the cognitive deficits," they concluded. "We here have been able to introduce genetically a single molecular alteration in a restricted and regulated fashion and to study its behavioral and physiological consequences."

The researchers said that their findings suggest that cognitive symptoms of schizophrenia may arise from subtle genetic differences in the dopamine receptor gene in schizophrenics that increase receptor activity.

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org
http://www.cell.com

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Success at leading conference on silicon materials science and technology in Japan

13.12.2018 | Awards Funding

NSF-supported scientists present new research results on Earth's critical zone

13.12.2018 | Earth Sciences

Barely scratching the surface: A new way to make robust membranes

13.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>