Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin tough skin, slow-growing gills protect larval Antarctic fish

14.02.2006


Very thin but hardy, unblemished skin and slow developing gills appear to be keys to survival for newly hatched Antarctic notothenioids, a group of fish whose adults thrive in icy waters because of antifreeze proteins (AFPs) in their blood.



Such adaptations are important, researchers at the University of Illinois at Urbana-Champaign say, because the larval fish of at least two species of notothenioids that inhabit the Ross Sea at McMurdo Sound and Terra Nova Bay surprisingly lack sufficient antifreeze to protect them through their first three months of life.

The unexpected discovery, reported online by the Journal of Experimental Biology ahead of regular publication, counters the assumption that these vital proteins must be present from the time of hatching -- a view held by scientists since fish AFPs were found in the 1960s.


Internal fluids such as blood in many notothenioids are about half as salty as seawater. While seawater reaches its freezing point at -1.91 degrees Celsius, fish fluids will freeze at about -1 degree Celsius. The water where these species dwell rarely rises above the freezing point and is regularly filled with ice crystals.

"The way that we’ve understood how adult polar fishes survive has been based on their use of these antifreeze proteins to lower the freezing point of their internal fluids," said lead author Paul A. Cziko, a research specialist in the department of animal biology. "We finally got a chance to look at the larval fish, and it seems that they don’t always have to have antifreeze proteins to survive."

Cziko, who earned bachelor’s degrees in honors biology and biochemistry in 2004 from Illinois, studied in Antarctica as an undergraduate with animal biology professors Chi-Hing (Christina) Cheng and Arthur L. DeVries, who discovered AFPs in notothenioids.

The research team, which also included Clive W. Evans of the University of Auckland in New Zealand, studied three notothenioid species: Gymnodraco acuticeps (naked dragonfish); Pagothenia borchgrevinki (bald notothen); and Pleuragramma antarcticum (Antarctic silverfish). All species develop as eggs for between five and 10 months before hatching in icy waters in the Austral spring. Five years of data, collected from 2000 to 2004, were analyzed.

While each species spawned at different depths, all larvae swam upward into platelet ice, located just below several meters of surface ice, when they hatched, seeking perhaps a safe area to hide from predators, Cziko said.

The average freezing point of the larval fish fluids was about -1.3 degrees Celsius, according to testing with a nanoliter osmometer. Yet the fish hatch into water at almost -2 degrees Celsius. "With all this ice around, there is no way they can prevent freezing," Cheng said. "At -2 degrees Celsius, internal fluids would freeze instantly and the baby fish would die."

"This 0.7 of a degree Celsius is small but very significant," Cziko said. "In adults, we find ice in their bodies but these small crystals don’t grow because of antifreeze proteins. Finding that larval fish don’t have enough antifreeze really threw off how we understand survival in fish."

While the larvae of one species, the bald notothen, survives using high levels of AFPs like the adults, the researchers were astonished to find that the dragonfish and silverfish hatchlings have too little to allow survival during direct contact with ice. Looking more closely, the researchers discovered that the gills of all three species were undeveloped at hatching, minimizing the risk of ice passing through them to get inside.

The delicately thin skin of the larval fish may offer additional protection, because their skin hasn’t yet been exposed to environmental damages, Cheng said. The skin and undeveloped gills, Cziko said, may combine to allow time for antifreeze levels to rise.

The production of AFPs did not show much increase in the larval fish until 84 days after hatching, the researchers found. Adult values weren’t reached for 147 days.

"Amazingly," DeVries said, "for about three months the larval fish must rely only on their skin and gills to prevent ice from entering, and to keep them from freezing solid."

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>