U of MN researchers identify new cord blood stem cell

Discovery suggests potential treatment for regenerating nerve tissue after stroke


Researchers at the University of Minnesota Medical School have discovered a new population of cells in human umbilical cord blood that have properties of primitive stem cells.

Umbilical cord blood is generally known to contain hematopoietic stem cells that can only produce cells found in blood. The new findings, however, identify a small population of cord blood cells with the characteristics of more primitive stem cells that have the potential to produce a greater variety of cell types.

“We are excited by this discovery because it provides additional insight into how stem cells can restore function in the brain after injury,” said Walter Low, Ph.D., senior investigator of the study, and professor of Neurosurgery and the Stem Cell Institute at the University of Minnesota.

This research was published in the latest issue of the journal Stem Cells and Development.

Transplantation of these human cord blood stem cells into laboratory rodents with experimental strokes resulted in significant reductions in the size of brain lesion, and improved these animals’ use of their limbs.

Some of the transplanted stem cells developed into “neuron-like” cells that are typically found in the brain. In addition, the transplanted cells also induced an unanticipated reorganization of host nerve fibers within the brain, which may explain why the rats regained function, Low said.

Media Contact

Sara E. Buss EurekAlert!

More Information:

http://www.umn.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors