Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversible Microlenses to Speed Chemical Detection

14.02.2006


Scientists at Georgia Tech have created technology capable of detecting trace amounts of biological or chemical agents in a matter of seconds, much faster than traditional methods, which can take hours or up to a day. The system uses reusable hydrogel microlenses so small that millions of them can fit on a one-inch-square plate. It could greatly enhance the ability of authorities responding to a biological or chemical weapons attack as well as increase the speed of medical testing. The research appears in the February 20 edition of the chemistry journal Angawandte Chemie.


"Reversible Microlenses"


On the left, a microlens is in the “on” state and ready to detect. The right shows the microlens in the “off” state after it has detected its target chemical.



The microlenses make use of the antibody-antigen binding, the same process used by the human immune system, to detect biological or chemical agents. When antibodies on the microlenses come into contact with the antigen they are set to detect, they bind, causing the lenses to swell and become less dense. By projecting an image through the tiny lenses, scientists can view this swelling as a change in the microlens’ focal length. If the projected image is normally in focus, it goes out of focus when it comes into contact with the substance.

“These are reversible, so you can use the same lenses over and over again. This is the first time someone has done this with microlenses,” said L. Andrew Lyon, associate professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology.


Lyon and colleagues tested their system on its ability to detect biotin, a B-complex vitamin. To make the two-micrometer-wide microlenses, they coated the surface of a flexible polymeric hydrogel microsphere with the antigen biotin and aminobenzophenone (ABP), a photo-cross-linking agent, which is able to chemically attach to other molecules when exposed to UV light. Adhering these microparticles on a glass substrate causes them to deform into microlenses. After binding the biotin with its antibody, researchers hit it with ultraviolet light, causing the ABP to react with the antibody, attaching it to the microlens irreversibly. The microlenses are now ready to do their job.

“When you expose the lens to a solution that contains the antigen, it will compete for the binding site on the antibody. When the antigen and antibody bind, the lens swells and become less dense, changing its focus,” said Lyon.

Once developed into a device, the microlenses’ ability to conduct rapid chemical and biological tests could lead to significant savings in healthcare costs as many blood tests could be run in a physician’s office rather than being sent to an outside lab. It could also allow authorities to rapidly detect and identify a toxic chemical in the event of a spill or terrorist attack.

Many traditional analyses using enzyme or fluorophore-labeled antibodies can take up to a day or more and require large pieces of expensive equipment. A device built with microlenses could be handheld, since standard technologies currently exist that integrate microlenses into compact optical systems.

“The beauty of this is that the microlenses are very tunable in terms of sensitivity,” said Lyon. “You can also make arrays so you can detect multiple components on one sample, allowing you to multiplex your detection. Whereas now, each separate thing that doctors look for in a blood test is a different test they have to do in the lab.”

Lyon said the next step in developing the microlens sensors is to test the technology’s performance in complex biological fluids, like blood serum.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>