Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecules overcome drug resistance in cancers associated with high-risk viruses

14.02.2006


Treatment of human cancer is often impeded when cancer cells develop resistance to drugs that are designed to induce a type of programmed cell death called apoptosis. A new study published in the February issue of Cancer Cell identifies compounds and mechanisms that can overcome a specific type of resistance to chemotherapeutic-induced apoptosis. The findings may have application for treatment of cancers that are linked to the human papilloma virus (HPV) oncoprotein E6, such as cervical cancer.



Certain viral oncoproteins, including HPV E6, are known to interfere with the function of a protein called p53, a key tumor suppressor involved in apoptosis. Loss of p53 is linked to uncontrolled cell proliferation, the hallmark of cancer, and is known to increase the resistance of tumor cells to some chemotherapeutic treatments. HPV is a major cause of cervical cancer, and earlier studies have suggested that interfering with E6 may lead to the death of E6-expressing cells. However, methods used to target E6 in these studies involved techniques that are not easily translatable to therapeutic use, and at this time, no specific therapies exist.

Dr. Brent R. Stockwell and colleagues from Columbia University designed a study to uncover small molecules that can overcome E6-induced drug resistance and which would be more easily adaptable to cancer treatment. The researchers used a screening method to look for compounds that potentiate chemotherapeutic effectiveness of the agent doxorubicin in E6-expressing colon cancer cells that are normally relatively resistant to the drug. "We identified several groups of compounds that potentiate doxorubicin’s lethality in E6-expressing tumor cells, thus overcoming E6-induced drug resistance," offers Dr. Stockwell.


Results describe one group of compounds, named indoxins, that proved to be dual-action agents that drive two distinct cell cycle-related mechanisms. Dr. Stockwell explains that activation of each mechanism alone had only a modest effect on chemotherapeutic effectiveness, but activation of both mechanisms simultaneously contributed substantially to doxorubicin sensitivity. Enhanced understanding of the mechanisms that are associated with doxorubicin resistance will lead to design of future therapies that can be specifically targeted to overcome drug resistance in E6-expressing tumors.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.cancercell.org

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>