Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Good DNA Goes Bad

13.02.2006


“Backward” DNA leads to DNA breaks associated with leukemia, study finds



When otherwise normal DNA adopts an unusual shape called Z-DNA, it can lead to the kind of genetic instability associated with cancers such as leukemia and lymphoma, according to a study by researchers at The University of Texas M. D. Anderson Cancer Center.

The study, issued in advance of the Feb. 21 edition of the Proceedings of the National Academy of Sciences, demonstrates for the first time that the oddly shaped DNA can cause DNA breaks in mammalian cells. Interestingly, these sequences prone to forming Z-DNA are often found in genetic “hot spots,” areas of DNA known to be prone to the genetic rearrangements associated with cancer. About 90 percent of patients with Burkitt’s lymphoma, for example, have DNA breaks that map to regions with the potential to form these odd DNA structures.


“Our study shows that DNA itself can act as a mutagen, resulting in genetic instability,” says Karen Vasquez, Ph.D., lead author of the study and assistant professor of carcinogenesis at M. D. Anderson’s Science Park Research Division, Smithville, Texas. “The discovery opens up a new field of inquiry into the role of DNA shape in genomic instability and cancer.”

Imagine untwisting the DNA ladder and then winding it up the other way. The result is a twisted mess with segments jutting out left and right, and the all important base pairs that hold the DNA code zigzagging in a jagged zipper shape. Scientists call this left-hand twist Z-DNA. This is a far cry from the graceful right-hand twisted helix that has become an iconic symbol of biology. It just doesn’t look right, and it doesn’t act right either, according to Vasquez. This awkward shape puts strain on the DNA, and as Vasquez and her colleagues show, can cause the DNA molecule to break completely apart.

Scientists have known for many years that DNA can take shapes other than the typical twisted ladder form, but they weren’t sure how often these alternate shapes occur inside cells.

Researchers who study these shapes had previously shown that Z-DNA can form only at certain DNA sequences because the shapes of the bases themselves contribute to Z-DNA formation. For example, the sequence CG repeated more than 14 times in a row is prone to forming Z-DNA, while the sequence AT is not as efficient at forming this structure. Analysis of the genome reveals that DNA sequences prone to forming the Z-DNA structure occur in 0.25 percent of the genome, according to Vasquez.

She and her colleagues decided to find out whether Z-DNA itself had any effect on the DNA stability. To do that, post-doctoral fellow Guliang Wang, Ph.D., made pieces of DNA designed to form the Z-DNA shape. The researchers then introduced these segments of DNA, called plasmids, into bacterial cells and human cells in the laboratory. They then broke apart the cells and examined what happens to the DNA. They found that in bacterial cells, the Z-DNA caused small deletions or insertions of one or two DNA bases. But in human cells, the introduced Z-DNA led to large-scale deletions and rearrangements of the DNA molecule.

“We discovered that bacterial cells and human cells process the Z-DNA in different ways,” she says. “We aren’t sure why, but we think that the DNA repair machinery may be involved in processing the Z-DNA structure differently in bacteria versus human cells.”

Since formation of Z-DNA is naturally occurring and can exist in the genome, the scientists next want to understand why cells can sometimes process the structure without creating double-stranded breaks. They also want to know why certain places in the genome become “hot spots” for these breaks, while other seemingly similar areas do not.

“If we could understand the players involved in this process, we might be able to prevent the generation of these breaks,” says Vasquez. “For example, if certain types of cell stress lead to breaks, we might be able to find ways to reduce those stresses and prevent breaks.”

Senior research assistant Laura Christensen also contributed to the research. The study was supported by grants from the National Cancer Institute and the National Institute of Environmental Health Sciences, as well as an Odyssey fellowship to Guliang Wang from M. D. Anderson Cancer Center.

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>