Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A clue to core problem of neurodegenerative disease and cell death

10.02.2006


Misfolded and damaged proteins are common to all human neurodegenerative diseases. Clumps of these aggregated proteins destroy neurons within the brain and cause disease. But explanations for the mechanism that actually causes cell death have varied widely, puzzling scientists and leading them to ask whether Alzheimer’s, Parkinson’s, Huntington’s and Creutzfeldt-Jakob diseases and familial amyotrophic lateral sclerosis (ALS) are related diseases or very different diseases.



Northwestern University scientists now offer a clue that may get to the core of the cell death question and establish a common mechanism in these diseases. In a study to be published online Feb. 9 by the journal Science, the research team shows that polyglutamine (the toxic component of the protein responsible for Huntington’s disease) is so demanding on the cell’s system that it changes the environment within the cell, causing other metastable, or partially folded, proteins to crash and lose function. Over time, this can cause the organism to die.

"Our results suggest that these disease-associated, aggregation-prone proteins may exert their destabilizing effects by interfering generally with other proteins that are having difficulty folding," said Richard I. Morimoto, Bill and Gayle Cook Professor of Biochemistry, Molecular Biology and Cell Biology, who led the study. Morimoto is an expert in Huntington’s disease and on the cellular and molecular response to damaged proteins.


"We found that the system for protein quality control is not robust at all -- it is very delicate," said Morimoto. "Slight changes in the cell’s environment have huge consequences. A single mutant polyglutamine protein interferes with the folding and functioning of very different types of proteins in the cell. This, in turn, could interfere with innumerable cellular processes and offers an explanation of why so many different mechanisms have been proposed for toxicity and cell death."

Morimoto speculates that it could be the misfolded protein’s structure that, indirectly, is causing the other proteins to become non-functional. If so, these findings have implications for all neurodegenerative diseases. For each disease, a single or a small number of mutant proteins have been identified as causing the disease, and studies have shown that the misfolded states of these mutant proteins are all structurally related.

The experiments were conducted in C. elegans, a transparent roundworm whose biochemical environment is similar to that of human beings and whose genome, or complete genetic sequence, is known. The researchers picked seven random and unrelated proteins that are expressed in the same compartment in the cell as mutant polyglutamine. The seven metastable proteins -- each essential to the functioning of muscle, nerve or hypodermal cells -- had a temperature-sensitive mutation: the proteins are fine at normal temperature but when the temperature is elevated the mutation is expressed.

When the researchers introduced the toxic polyglutamine protein, the environment of the cell completely changed. In the case of each of the seven proteins, the presence of the expanded polyglutamine caused each mutation to be expressed at normal temperature. In turn, the metastable protein intensified the aggregation properties of the polyglutamine protein.

"These results could provide a very powerful tool for understanding all the neurodegenerative diseases," said Morimoto. "Do all proteins that cause this class of disease, such as mutant SOD in familial ALS or prions in Creutzfeldt-Jakob disease, have the same consequences? To find out, we plan to do the same experiments using the mutant proteins associated with the other diseases."

"This research suggests that a common mechanism may underlie a variety of protein folding diseases," said James Anderson, a geneticist at the National Institute of General Medical Sciences, at the National Institutes of Health, which partially funded the research. "While the hypothesis needs to be tested in other organisms, findings made in model organisms such as C. elegans are often the first step in understanding the molecular roots of human diseases."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>