Molecular breakthrough will add grist to the mill for wheat breeders

A team of scientists at the John Innes Centre(1) in Norwich, UK led by Dr Graham Moore have a completely new understanding of the structure of a gene complex in wheat that controls the pairing of its chromosomes, knowledge of which has the potential to revolutionise wheat breeding.

Dr Moore said “The transfer of useful traits such as disease, drought and salt tolerance from wild species into wheat is a difficult and complex process. This new insight into the molecular nature of Ph1 and how it works, will allow us to identify chemicals that could inhibit its effect. This would have implications for crop improvement far beyond just wheat breeding.”

Within wheat Ph1 regulates and stabilises the pairing of its six sets of chromosomes. However, when wide crossing with wild relatives Ph1 unfortunately prevents the pairing of wheat and wild relative chromosomes precluding the successful introduction of useful new genes. The ability to alter the control exerted by Ph1 would enable wheat breeders to access a much greater range of genetic diversity.

Reported in the international scientific journal Nature the group describe how, due to the complex nature of Ph1 they used a combination of two techniques in their search for key genes involved; molecular markers from the much smaller sequenced genomes of rice and Brachypodium (a new model temperate monocotyledon) and deletion lines in wheat that lack parts of chromosomes to physically dissect Ph1.

Their findings have given them the information required to create the necessary variation in Ph1 which will make wheat breeding much easier in future.

Media Contact

Dr Graham Moore alfa

More Information:

http://www.jic.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors