Edinburgh scientists identify a key player in making specialised cells from embryonic stem cells

Mouse embryonic stem cells can be directed to become neurons (green) when grown in a dish…

Scientists from the University of Edinburgh have shown that the protein Mbd3 plays a crucial role in the process by which embryonic stem cells become specialised cells, such as brain or skin cells. These findings make significant advances in understanding how embryonic stem cells can be made to become all the different types of cell in the body, ultimately to be used in replacement therapies for specific diseases and injuries. This research is published online this week in the leading scientific journal Nature Cell Biology.


In the body, stem cells divide to produce both copies of themselves and other, more specialised, cell types. The Edinburgh scientists made mouse embryonic stem cells lacking the Mbd3 protein. Unlike non-engineered cells, the Mbd3-lacking cells failed to form different cell types when induced to do so in a dish, but rather remained in an uncommitted state. When injected into very early mouse embryos, the Mbd3-lacking cells behaved in a similar way, disrupting the normal development of the embryo.

Brian Hendrich, leading the research team, says “It is well established that embryonic stem cells need certain factors to sustainably make copies of themselves, that is, to self-renew. We have now shown, for the first time, that to leave that state and go down the specialisation pathway cells require the activity of Mbd3; it is not enough simply to remove the self-renewal factors. If Mbd3 is absent, the cells remain in an embryonic stem cell-like state”.

These latest findings will also provide insights into some of the crucial differences between mouse and human embryonic stem cells. Mouse embryonic stem cells need the protein LIF to be able to make copies of themselves indefinitely; human embryonic stem cells, on the other hand, do not need LIF to keep multiplying. Mbd3-lacking cells are similar to human embryonic stem cells in that they do not require LIF. They may, therefore, be used as a tool to understand how human embryonic cells bypass the need for LIF when multiplying without limit.

Mbd3 is part of a large complex of proteins called the NuRD (Nucleosome Remodelling and Histone Deacetylation) complex. NuRD is known as an epigenetic silencer, as its role in cells is to turn genes off.

This research was supported by The Wellcome Trust, the MRC and the BBSRC.

Media Contact

Ana Coutinho alfa

More Information:

http://www.iscr.ed.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors