Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step forward in the fight against bacterial infections

02.02.2006


Bacterial infections can strike anyone, and they can sometimes be fatal. Because more and more bacteria are becoming resistant to the pre-eminent remedy - antibiotics - the search for new remedies against bacterial infections is in high gear. Research by scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to Ghent University shows that certain mice, by nature, can withstand particular bacterial infections. Elucidation of the biological process that underlies this natural ability offers perspectives for the development of new therapeutics.



A cascade of reactions protects us against infections

Most of the time, our body can overcome bacterial infections. Only a limited number of bacteria can make us sick, but sometimes they can be fatal. In the US, about 200,000 people die from bacterial infections each year. Normally, our natural immune system bars bacteria from entering our body, or it renders them harmless. The aggressiveness of the bacteria, our general state of health, and the speed with which our immune system reacts determine whether or not we become sick after contact with a bacterium.


Upon contact with a bacterium, or a bacterial component, the immune system springs into action. One such component of the bacterial cell wall is LPS. The binding of LPS with its specific receptor in our immune system - TLR4 - initiates a long series of reactions that bring on an inflammation, which eliminates the bacteria from our body. Of course, this chain of reactions is strictly controlled, because excessive inflammation can lead to lethal shock.

Mice that are able to cope with acute inflammations

Tina Mahieu and her colleagues from the research group led by Claude Libert are working with mice that are not susceptible to toxic LPS. The VIB researchers have discovered the mechanism behind this insensitivity.

One of the steps in the process of inflammation following contact with LPS is a profuse production of type 1 interferons. These proteins play an important role in the regulation of immunity. The Ghent researchers administered 10 times the lethal dose of LPS to the mutant mice, without deadly consequences. This finding could not be attributed to an alteration in TLR4, but to a reduced production of type 1 interferons. To verify this, Mahieu and her colleagues administered these interferons preventatively to the mice - which made the animals susceptible to LPS once again. Thus, this research shows that the mice are no longer able to produce large quantities of type 1 interferons - with the consequence that an inflammation fails to arise, demonstrating the importance of type 1 interferons to the inflammation process. On the other hand, the mice produce just enough interferons to activate the immune system against the bacteria, so that the mice are protected against bacterial infections.

Another step forward in the battle against bacterial infections

The results of this research are very relevant to the quest for new therapeutics for bacterial infections. The mutant mice display a combination of important characteristics: they are resistant to LPS, but they still recognize and destroy pathogens. The limited quantity of type 1 interferons enables the mice to cope with a lethal shock resulting from inflammation, but this small quantity also ensures that immunity is preserved. A next step in combating bacterial infections is to uncover the mechanism behind this reduced production.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>