Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells cure tendon damage- scientists get injured equine athletes back on their hooves with pioneering stem cell therapy

02.02.2006


Researchers have unraveled the potential of stem cells in the repair and treatment of damaged tendon tissue. Royal Veterinary College (RVC) spin-out company VetCell Bioscience Ltd, set to star on the BBC 1 fly on the wall series ’SuperVets’ on Thursday 3rd of February, is helping revolutionise veterinary, and now also human, medicine through stem cell technology.



The London Bioscience Innovation Centre based spin-out set up in 2002 by business consultant Greg McGarrell, CEO of VetCell, is going from strength to strength and has now successfully treated over 300 performance horses, such as racehorses, eventers and showjumpers.

Some of the most devastating injuries and diseases of performance horses are now treatable thanks to high tech stem cell therapy. Stem cells, for the first time, offer the prospect of a return to a fully functional tendon.


In the forthcoming instalment of ’SuperVets’ Zara, a lame thoroughbred cross with a core lesion, is treated with stem cell therapy.

Like human athletes, competitive horses are vulnerable to joint injuries, especially tendon. Performance horses, like human athletes, are often pushed to their limits and this can lead to tendon or ligament injury. Injury to tendons is healed by extensive scar tissue, which limits the tendon’s normal role. The scar tissue impairs movement and is stronger than normal tendon, so does not stretch in the same way as normal tendon. In turn, this is likely lead to further lameness.

But, using the new technique to reduce the scar tissue formation caused by injury, and even regenerate damaged tendons, which is notoriously difficult in horses, can lead to complete recovery. The stem cell treatment is unique as it uses tissues to grow more tendon-like cells.

VetCell is the leading provider of stem cell technology to the world of animal health. But, VetCell scientists are now working on revolutionary treatments to speed up human biological healing processes with stem cells. It is possible that similar repair mechanisms can be instituted in humans as well. The researchers are looking at ways that the technology can be transferred to humans to treat conditions that affect tendons and ligaments such as Achilles tendonitis, a painful and often debilitating inflammation of the Achilles tendon, which can make even walking impossible.

Greg McGarrell , CEO of VetCell Bioscience Ltd, said: “VetCell is a real zero to hero biotechnology company, we’ve built it up into one of the UK’s most successful biotechnology University spin-outs on a shoe string. We have a strong management team, which means that we’ve built a powerful company without wasting a penny.

“Our success is largely due to the cutting edge research at the Royal Veterinary College being combined with the knowledge of professional city people. This means that VetCell has had a commercial focus right from the start. While universities are keen to create spin-out companies, far too few of these become successful businesses. A key problem with spin-outs is that they lack good business management.”

Jenny Murray | alfa
Further information:
http://supervets.rvc.ac.uk
http://www.communicationsmanagement.co.uk

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>