Scientists find genetic pathway that could lead to drugs for kidney disease

Scientists at the University of California, Santa Barbara have reported a discovery at the cellular level that suggests possibilities for drug therapy for kidney disease.


Over 600,000 people in the U.S. are affected by the inherited kidney disease known as ADPKD, short for autosomal-dominant polycystic kidney disease. In the U.S. this is more than the number of individuals affected by cystic fibrosis, muscular dystrophy, hemophilia, Down’s syndrome, and sickle cell anemia combined. The disease is characterized by the proliferation of cysts that eventually debilitate the kidney, causing kidney failure in half of all patients by the time they reach age 50.

Currently no treatment exists to prevent or slow cyst formation, and most ADPKD patients require kidney transplants or life-long dialysis for survival, explained Thomas Weimbs, assistant professor of biology at UCSB and director of the lab that made the discovery, which was reported in the January issue of the journal Developmental Cell.

Kidney cells are lined with small hair-like cilia. The cilia sense fluid flow as urine is passed through the kidney and they send signals to the kidney cells that line the small canals –– called tubules. It is the loss of cilia function that leads to polycystic kidneys.

“With polycystic kidneys, these tubular cells think they have to repair an injury, and they ’repair’ by forming lots of cysts,” said Weimbs.

The disease is triggered by polycystin-1, a large protein. If it mutates, then the mutation leads to polycystic kidney disease. Even though polycystin-1 was discovered more than a decade ago, its function has remained unknown.

In this study, Weimbs and his colleagues discovered that, under normal conditions, the polycystin-1 keeps certain parts of the cell localized in the cilia and away from the nucleus. These parts of the cell are known as transcription factors. If there is an injury the flow of urine stops, and the transcription factors migrate to the nucleus of the cell, signaling the cell to divide to replace those cells that have been lost. In patients with this disease the repair mechanism is always turned on because the polycystin-1 is defective, or mutated. The discovery of this pathway thus opens the door to possible drug therapy for the disease. This is because the inhibition of any step along this pathway should have beneficial effects. Weimbs and his team are currently capitalizing on these findings by testing drugs to specifically affect components of this novel pathway.

Media Contact

Gail Gallessich EurekAlert!

More Information:

http://www.ia.ucsb.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors