Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot-spring bacteria flip a metabolic switch

31.01.2006


Scientists at the Carnegie Institution’s Department of Plant Biology have found that photosynthetic bacteria living in scalding Yellowstone hot springs have two radically different metabolic identities. As the sun goes down, these cells quit their day job of photosynthesis and unexpectedly begin to fix nitrogen, converting nitrogen gas (N2) into compounds that are useful for cell growth. The study, published January 30 in the early online edition of the Proceedings of the National Academy of Sciences, is the first to document an organism that can juggle both metabolic tasks within a single cell at high temperatures, and also helps answer longstanding questions about how hot-spring microbial communities get essential nitrogen compounds.


The near-boiling pools of Octopus Spring in Yellowstone National Park are ringed with microbial mats – highly organized communities where photosynthetic cyanobacteria serve as the main power plants. Researchers have found that the single-celled cyanobacterium Synechococcus drops its day job of photosynthesis, and surprisingly fixes nitrogen gas (N2) into biologically useful compounds at night.



Carnegie’s Arthur Grossman, Devaki Bhaya, and Anne-Soisig Steunou, along with colleagues from four partner institutions*, are studying the tiny, single-celled cyanobacterium Synechococcus. Cyanobacteria evolved about three billion years ago, and are the oldest organisms on the planet that can turn solar energy and carbon dioxide into sugars and oxygen via photosynthesis. In fact, ancient cyanobacteria produced most of the oxygen that allows animals to survive on Earth.

Cyanobacteria such as Synechococcus are often found in the microbial mats that carpet hot springs, where life exists at near-boiling temperatures. These mats are highly organized communities where different organisms split up the work, with cyanobacteria serving as the main photosynthetic power plants. Microbial mats in Yellowstone National Park’s Octopus Spring contain Synechococcus that can grow in waters up to around 160°F, while other microbes in the hot spring can tolerate temperatures that exceed 175°F. But until now, it was unclear which organisms could fix nitrogen--especially in the hotter regions of the mat.


"The cyanobacteria are true multitaskers within the mat community," Grossman said. "We had assumed that the single-celled cyanobacteria growing at elevated temperatures were specialized for photosynthesis, but it looks like they have a more complicated metabolism than we initially suspected."

All cells require nitrogen for making proteins and nucleic acids, but N2 gas from the atmosphere cannot be directly used for this purpose; it must first be reduced or fixed into larger, carbon-containing compounds. N2 fixation is a problem for photosynthetic cells, since the oxygen produced during photosynthesis inhibits the nitrogenase complex--the enzyme factory that fixes N2. Other organisms have found creative solutions to this dilemma. For example, plants rely on symbiotic N2-fixing bacteria that live in their roots, far away from the photosynthetic leaves. A different type of cyanobacteria grows in multicellular strands and makes specialized N2-fixing cells called heterocysts that are walled off from the photosynthetic cells.

Many researchers believed these filamentous cyanobacteria were the major N2 fixers in microbial mats. But they are not tolerant of extremely high temperatures, and only live at the cooler edges of the mat, raising the question of whether N2 fixation was critical for organisms in the hotter regions of the mat. Because heat tolerant, single-celled cyanobacteria like Synechococcus specialize in photosynthesis, many researchers had dismissed them as candidates for N2 fixation.

"Synechococcus cannot spatially separate photosynthesis and N2 fixation, as some photosynthetic organisms do," Bhaya explained. "Instead, they solve the problem by temporally separating the tasks."

Lead author Steunou and her collaborators tracked the activity of genes involved in photosynthesis and N2 fixation over a 24-hour period. They found that photosynthetic genes shut down shortly after nightfall, and N2-fixation genes switch on shortly thereafter. The nitrogenase enzyme complex snaps into action at about the same time, following the same pattern as the N2-fixation genes.

Fixing N2 requires a lot of energy, which raises another problem for Synechococcus. When photosynthesis shuts down at night, the mat becomes oxygen starved, making it difficult to perform respiration--an efficient energy-generating pathway that requires O2 to release the energy stored in sugars. Instead, the cells must rely on fermentation--a less efficient energy-generating pathway that can proceed without oxygen. Steunou and colleagues found that at night, Synechococcus turns on genes for specific fermentation pathways that release energy from polyglucose, which probably powers N2 fixation.

"These results add to our understanding of microbial mats as complex, integrated communities that are exquisitely adapted to life in the tough hot spring environment," Grossman commented. "There may be several different organisms living in a given mat, but it seems that they are engaging in community metabolism that changes depending on the time of day. Perhaps it is more correct to consider the mat as a single functional unit rather than as a group of individual organisms."

Dr. Arthur Grossman | EurekAlert!
Further information:
http://www.carnegieinstitution.org/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>