Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hope for arthritis stems from within

31.01.2006


Leeds bioengineers have developed an innovative technique for cartilage repair combining the self-healing powers of the body with stem cell science to help young people avoid debilitating knee problems and give hope to arthritis sufferers.



Current treatments of cartilage defects in the knee are expensive, have lengthy recovery times, and can even cause as much damage as good. “We’re responding to a real need,” said reader in bioengineering Dr Bahaa Seedhom.

“Orthopaedic surgeons are looking for ways to repair cartilage defects in young people which will delay, maybe even prevent, the need for total knee replacement.”


The bioengineers have invented a repair technique – and tools – that cut surgery times from two hours to ten minutes, and can have patients back on their feet within three weeks. The treatment involves a surgical technique called subchondral drilling, where holes are drilled into the bone beneath the cartilage in the damaged site, causing bleeding from the bone marrow, which stimulates stem cells to grow tissue within the damaged area. Surgeons then implant a felt-like pad, to encourage the cells to expand and grow into tissue.

As the treatment uses the body’s own stem cells, it is much cheaper than existing methods, where tissue is engineered outside the body and then implanted. The system has potential for widescale applications. “Initially young people with small defects will be most suitable for treatment, but once the system has been put through its paces it might well be used for larger defects in older arthritic patients,” said Dr Seedhom.

Dr Seedhom is joined on the project by Drs Toyoda, Luo, Lorrison and Michael Pullan from bioengineering. The arthritis research campaign has awarded the project £131,000 to explain the cartilage regeneration process, and Smith and Nephew have begun an evaluation programme to commercialise the technology for clinical use within four years.

Claire Jones | alfa
Further information:
http://www.leeds.ac.uk/medicine/musculoskeletal/bioengeneering.html
http://reporter.leeds.ac.uk/513/s2.htm

More articles from Life Sciences:

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>