Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BRCA1 gene found to inhibit two sex hormones, not just one

27.01.2006


Could help explain why women who have mutations in their BRCA1 gene are susceptible to ’hormone-dependent’ cancers including breast, endometrial and cervical cancers



It’s been known that the breast cancer susceptibility gene BRCA1 regulates use of estrogen in breast and other cells, but now researchers at Georgetown University Medical Center have discovered that it also controls activity of a second sex steroid hormone, progesterone.

The findings, conducted in cell culture and in mice and reported by the researchers in the January issue of Molecular Endocrinology, could help explain why women who have mutations in their BRCA1 gene are susceptible to a number of different "hormone-dependent" cancers, including those of the breast, endometriun and cervix.


It also has implications for ordinary cancers that arise because a normal BRCA1 gene is under-expressed, said the study’s principal investigator, Eliot Rosen, MD, PhD, professor of oncology, cell biology, and radiation medicine at the Lombardi Comprehensive Cancer Center.

For example, he says that up to 40 percent of breast tumors are deficient in BRCA1, "and it may be that some patients could benefit not only from an anti-estrogen therapy, like tamoxifen, but also from an anti-progesterone agent.

"We don’t know if that is true yet, of course, but it is certainly worth investigating, given our findings," Rosen said.

The BRCA1 gene and a second gene, BRCA2, were discovered to be breast cancer susceptibility genes in 1994 and 1995, respectively. Women who inherit faulty copies of one of these genes have up to an 80 percent increased risk of developing breast cancer by age 70, and are also more likely to be diagnosed with ovarian cancer.

Rosen and his research team undertook the study to understand why loss of the BRCA1 gene results in cancers in tissues that are dependent on hormones. They focused on the progesterone hormone, in part, because of the observation that women who use hormone replacement therapy that includes both estrogen and progestin (a synthetic form of progesterone) are at greater risk of developing breast cancer than women who use only estrogen replacement.

The use of progesterone in the breast is tightly regulated and is primarily activated when growth in cells is needed, such as during the female menstrual cycle and to support a pregnancy. A cell’s use of progesterone and other such hormones is controlled by specific receptor proteins, located inside cells, which bind on to the hormone. This process activates the receptor, which then migrates to the cell nucleus to stimulate gene expression.

To find out what role BRCA1 played in progesterone receptor signaling, the Lombardi research team conducted a series of experiments. In one set of cell culture studies in the laboratory, they used breast cancer cells that were responsive to progesterone, and then genetically manipulated them to either over or under-express the BRCA1 gene in order to assess the gene’s effect on progesterone receptor signaling.

They also used mice in which the BRCA1 gene was partially deleted, but only in breast tissue. The animals were treated with estrogen, or progesterone, or both, and response of the mammary gland was compared with that of normal mice.

In this way, the researchers concluded that BRCA1 interacts physically with the progesterone receptor, and stops it from activating other genes. It does this even in the absence of the progesterone hormone, and, thus, acts as a strong check on errant growth.

"But in mice deficient in BRCA1, we found that estrogen plus progesterone has a particularly large effect in stimulating the growth of mammary epithelial cells − an effect much greater than the effects of either hormone used alone," Rosen said.

Liz McDonald | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>