Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping biological tubes in check: New insights into tube size morphogenesis

24.01.2006


The function of tubular organs like the kidneys, lungs, and vessels of the vascular system is critically dependent on the length and diameter of the tubular branches of which they are composed. Several devastating pathological conditions like polycystic kidney disease and ischemias have been intimately linked to the aberrant sizes of tubular organs. Yet the underlying cellular and molecular mechanisms that control tube size are poorly understood, and, consequently, drugs that intervene in tubular organ disorders are lacking.



Over the past few years, the tracheal system of the fruit fly Drosophila has provided important general insights into epithelial organ morphogenesis. The fly’s tracheal system is a tubular network that functions in respiration by transporting oxygen throughout the insect body. In two separate new studies, researchers have taken advantage of the usefulness of the Drosophila tracheal system as a model for understanding the development of tubular organs. Both studies point to the important role played in this process by the luminal extracellular matrix (ECM)--a scaffold of sorts that provides structure to surrounding cells and tissues. Past work had shown that inside the tracheal tube, or lumen, the polysaccharide molecule chitin forms a cylinder that is essential for the coordinated dilation of the surrounding epithelium to its normal mature size: Mutants lacking chitin show tubes with irregular diameter.

In one of the new studies, a group led by Christos Samakovlis at Stockholm University has revealed further evidence for an "instructive" function of the luminal ECM in tube size control. They found that while uniform expansion of tube diameter requires the growth of a luminal chitin scaffold, the subsequent modification of this chitinous mandrel by specialized enzymes (called chitin deacetylases) instructs the termination of tube elongation. Mutations in two genes encoding these enzymes disrupt tubular morphogenesis. The authors’ additional discovery that proper luminal localization of one of the chitin deacetylases requires a specialized secretory pathway and intact structures called paracellular septate junctions provides a mechanistic model for tracheal tube size regulation.


The other new study, from Stefan Luschnig and colleagues at Bayreuth University, Germany, and at Stanford University, reports a similar set of findings. These researchers also identified the two chitin deacetyase genes as specifically controlling tube length. As did the Samakovlis group, the researchers found that mutations in these genes, called serpentine (serp) and vermiform (verm), cause excessively elongated and tortuous tracheal tubes. Unlike previously characterized genes, serp and verm are not required for producing chitin, but rather are required for its normal fibrillar structure. The findings of the two groups suggest that tube length is controlled by modulating physical properties of the chitin cylinder. These properties may be sensed by tracheal cells, mediating the restriction of cell elongation.

Given the many similarities in the developmental mechanisms and cellular designs of tubular organs across species, the distinct roles of the luminal ECM in tracheal tube size control provide new leads in the investigation of lumen size regulation in a variety of tubular organs.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>