Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Good Shape

23.01.2006


Metal atom dictates the structure: new concept for the construction of enzyme inhibitors



Complex natural products usually adopt precisely defined spatial structures that are of critical importance to their biological function. A substrate must fit precisely into the “pocket” of an enzyme in order to be converted. The same is true of drugs meant to influence the function of enzymes. The biggest challenge in this is to develop effective methods for the synthesis of agents with tailored three-dimensional structures. A team of British and American researchers headed by Eric Meggers is using metal atoms to give their agents the right shape. They have now successfully used this concept to develop a specific inhibitor for protein kinase Pim-1 based on a ruthenium complex.

Protein kinases play an important role in a large number of cellular regulatory mechanisms. The natural compound staurosporine is an effective inhibitor for the adenosine triphosphate (ATP) dependent protein kinases because it fits precisely into the ATP-binding cavity of these enzymes. Meggers and his team at the University of Pennsylvania (USA) and Oxford University (UK) used the structure of staurosporine as the starting point for the development of a more simply constructed metal-containing inhibitor. Staurosporine consists of a flat aromatic ring system and a sugar component. The scientists replaced the sugar with a ruthenium atom bound to two ligands. The ring system, which was slightly altered, also binds to the ruthenium as a ligand. Like a clamp, it surrounds the metal from two sides. Careful selection of the two other ligands—carbon monoxide and an five-membered aromatic ring—allowed the researchers to give their ruthenium complex a form that mimics the spatial structure of staurosporine and also fits into the ATP-binding cavity.


The new ruthenium complex exists in two forms that are mirror images of each other. Tests with more than 50 different kinases showed that the “left-hand” version very specifically inhibits an enzyme called Pim-1 kinase—more than two orders of magnitude more effectively than staurosporine. Pim-1 kinase participates in the regulation of cell division: its inhibition could be advantageous in fighting certain tumors.

“The metal in such complexes is tightly bound so that it cannot be easily released and is supposed to be nontoxic,” stresses Meggers. “Its only job is to hold the individual ligands in the right spatial arrangement. In comparison to the purely organic compounds on which their structure is based, organometallic complexes are more simply constructed and are correspondingly easier to synthesize.”

Author: Eric Meggers, University of Pennsylvania, Philadelphia (USA)
Title: Ruthenium Half-Sandwich Complexes Bound to Protein Kinase Pim-1
Angewandte Chemie International Edition, doi: 10.1002/anie.200503468

Eric Meggers | Angewandte Chemie
Further information:
http://www.sas.upenn.edu/~meggers/
http://www.wiley.co.uk

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>