Dartmouth, GlycoFi researchers make leap in protein bioengineering

Investigators at Dartmouth’s Thayer School of Engineering, the Dartmouth-Hitchcock Medical Center, and the biotechnology firm GlycoFi, Inc., report a breakthrough in using yeast to produce antibodies with human sugar structures.


Antibodies are proteins with sugars attached to them, and they are emerging as a major class of drugs in the treatment of cancer. In the global effort to increase the potency of antibodies, the interdisciplinary work by the Dartmouth/GlycoFi team, published in the February issue of Nature Biotechnology, represents a major advance. The work shows that antibodies with increased cancer-killing ability can be produced by controlling the sugar structures that are attached to them.

“This work demonstrates, for the first time, that an antibody with human sugar structures can be produced in a non-mammalian host,” says Tillman Gerngross, GlycoFi’s Chief Scientific Officer and professor of engineering at Dartmouth’s Thayer School.

Huijuan Li, the Associate Director of Analytical Development at GlycoFi and the lead author on the study, adds, “By controlling the sugar structures on antibodies we have shown that the antibodies ability to kill cancer cells can be significantly improved and that proteins can be optimized by controlling their sugar structures.”

While the current report focuses on antibodies, the approach taken by the GlycoFi team can be applied to any therapeutic glycoprotein. Currently glycoproteins comprise about 70 percent of all approved therapeutic proteins and the therapeutic protein market is expected to grow at over 20 percent annually over the next decade, according to the researchers.

“GlycoFi is the world leader in protein glyco-engineering, and this work is an example of the exciting translational research that has been spun out of Dartmouth,” says Gerngross.

GlycoFi was founded in 2000 by Dartmouth professors Gerngross and Charles Hutchison, professor emeritus of engineering and CEO of GlycoFi. The company continues to maintain its Dartmouth ties, and it is engaged in several ongoing collaborations with Dartmouth faculty. Gerngross says that the environment at Dartmouth is exceptional for bioengineers that seek to take basic life science discoveries and translate them into technologies that benefit patients.

Media Contact

Sue Knapp EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors