Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Reverse’ tanning process could revolutionize leather industry

23.01.2006


A new ’greener’ and cleaner chemical process* could revolutionize the leather-tanning industry, according to a report in the Feb. 15 issue of the American Chemical Society’s journal Environmental Science & Technology. ‘Reverse’ leather tanning, which essentially works backward from the point where conventional tanning ends, saves time, money and energy while drastically slashing water use and pollution, say researchers at the Central Leather Research Institute in Adyar, India.



From pre-tanning to finishing, conventional leather tanning requires about 15 steps, which produce enormous amounts of wastewater and pollutants, including sulfides, chlorides, sulfates and other compounds. The new approach flips the process around and eliminates some of the steps, which results in multiple and substantial production efficiencies, the researchers say.

In the new process, for instance, prior to tanning, the skins are treated with chemicals normally used after tanning is completed. According to the researchers, the reverse process produces leather that is comparable to conventional tanning, but requires 42 percent less time, 54 percent fewer chemicals, 42 percent less energy, 65 percent less water and cuts emissions of key pollutants by up to 79 percent. The results were achieved without changing chemicals or using new ones, the researchers note.


In addition to costing less and being “greener” than conventional tanning, the reverse process is “easy-to-adopt” and could help the global industry overcome emerging environmental and economic concerns, the researchers conclude.

*Green chemistry is the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances.

Michael Bernstein | EurekAlert!
Further information:
http://www.chemistry.org/greenchemistryinstitute
http://www.acs.org

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>