Growing crops to cope with climate change

Scientists at the UK’s leading plant science centre have uncovered a gene that could help to develop new varieties of crop that will be able to cope with the changing world climate. Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) at the John Innes Centre in Norwich have identified the gene in barley that controls how the plant responds to seasonal changes in the length of the day. This is key to understanding how plants have adapted their flowering behaviour to different environments.

The John Innes Centre researchers have discovered that the Ppd-H1 gene in barley controls the timing of the activity of another gene called CO. When the length of the day is long enough CO activates one of the key genes that triggers flowering. Naturally occurring variation in Ppd-H1 affects the time of day when CO is activated. This shifts the time of year that the plant flowers.

Dr David Laurie, the research leader at the John Innes Centre, said, “Growing crops will become more difficult as the global climate changes. The varieties of crops grown in the UK are suited to the soil, seasons and traditional cool, wet summers. Later flowering in barley means it has a longer growing period to amass yield. If British summers get hotter and drier we will need types of wheat, barley and other crops that flower earlier, like Mediterranean varieties, to beat summer droughts. However, new varieties will need to be adapted in all other ways to UK conditions. ”

With the new knowledge about the workings of barley researchers and plant breeders will find it easier to select variations that will thrive in the UK environment but will also flower earlier, coping with hotter summers.

Dr Laurie commented, “Although our research has been on barley we know from observation that other crops show similar variation in the way they respond to the lengthening of the day in springtime. We are confident that we will find equivalent genes in other key crops.”

Professor Julia Goodfellow, BBSRC Chief Executive, said, “Climate change presents a huge challenge for the world. Although every effort must be concentrated on reducing the impact of human activity on the environment, science should also be answering questions about how we can live in an altered climate. Research such as this helps to present answers to some of these problems.”

Media Contact

Matt Goode EurekAlert!

More Information:

http://www.bbsrc.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors