Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fugitive genes

18.01.2006


In the world of genetic engineering one often talks about ‘transgenic organisms’. These are organisms that have been modified by the insertion of an alien gene into their genome. Now it turns out that there are naturally occurring transgenic plants. One such instance was found by Dr Lena Ghatnekar from the research team for evolutionary genetics at Lund University in Sweden. Her findings have just been published in the prestigious Proceedings of the Royal Society in London.



Sheep’s fescue (Festuca ovina) is a common grass that the research team at Lund University in Sweden has studied for a long time. One of its genes codes for an enzyme called PGIC. Lena Ghatnekar discovered that the enzyme did not look the same in all sheep’s fescue plants. It turned out that certain plants had extra genes for the production of PGIC and that these genes existed at a different site in the genome than the normal PGIC genes. At first the scientists believed that it was a matter of copied genes – gene duplications – but it soon proved to be a question of fugitive genes. Lena Ghatnekar explains:

”There are always minor differences from one plant to another when it comes to complex proteins like the enzyme PGIC. Maybe a difference of up to a few percent. But in this case the difference was six percent, and that is too much for an ordinary gene duplication.”


The alien has now been identified. The gene that produces the deviant PGIC comes from another grass, namely a meadow grass (Poa). This is surprising, since the fescues and the meadow grasses are not particularly closely related.

”We don’t know how the alien gene got into sheep’s fescue. When we have located precisely where in the genome the gene is situated, it will be possible for us to make a guess. But apparently the introgression led to a variant with high fitness, making the alien gene spread to later generations. Today, there are populations of sheep’s fescue where ten per cent of the plants carry the extra gene” says the head of the research team, Professor Bengt O. Bengtsson, adding:

”This is a truly unique event. Poa and Festuca are so remote from each other that a plant breeder would never dream of trying to cross them. Perhaps the gene was inserted into Festuca via a virus that can infect both grass species. In that case it is a sort of spontaneous genetic transformation; today’s genetic engineers make use of viruses to transfer genes. Another possibility is that something very special happened during fertilization. To be sure, grasses have a ‘defence system’ that normally prevents foreign pollen from growing on their pistils, but maybe in some way a fragment of a Poa pollen hitched a ride with a regular Festuca pollen.”

Göran Frankel | alfa
Further information:
http://www.lu.se
http://www.vr.se

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>