Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Proteins To Fight Cancer

13.01.2006


An approach to treating intestine cancer is being developed by Russian researchers from the Bioengineering Centre, Russian Academy of Sciences, under Anna Prokhorchuk’s guidance jointly with American colleagues sponsored by the international CRDF foundation and the Federal Agency for Science and Innovation (Rosnauka).



Any cancerous disease changes the genetic landscape – some genes are suppressed, others get activated, which results in tumour growth, the formation of metastases, and cancer spreads beyond immune system control. The universal mechanism which regulates genes’ activity is DNA methylation, where a methyl group is joined to a certain section of a molecule. Special methyl-DNA binding proteins come into action, bound with a section of the methylated DNA and this suppresses gene activity. The researchers are interested in one of such proteins named Kaiso. They assume that this protein plays an important role in the intestine cancer development, and it can be used for diagnostics and treatment.

First, the researchers measured the level of expression of the Kaiso protein gene in intestinal tumours in mice and in human patients. The level of expression turned out to be dozens of times higher than that in healthy organs and tissues. ‘Kaiso-zero’ mice were then used which were found to be resistant to cancer. The same resistance to cancer was acquired by mice whose DNA methylation had been suppressed by other methods.


As the Kaiso protein content in the majority of human tumours is much higher than that in healthy tissues, it can be potentially used for early detection of cancer. Contemporary molecular methods allow to analyze expression of dozens of genes in the cancerous growth tissues and to compare the obtained picture with the “gene portrait” of normal cells. Certainly, the Kaiso gene is not the only one that can be used for such diagnosticums. The tumour represents a very heterogeneous and rather dynamic system, which requires knowledge of almost the entire “genetic portrait” of 28,000 genes.

It is thought that there are other between 10 and 30 key genes which can also serve as markers of tumour characteristics. This will save resources and time, relieving the necessity of analyzing the entire multithousand genome.

In cancer therapy, chimeric Kaiso protein could be created. The ordinary Kaiso protein (via DNA methylated binding) inhibits the work of cancer suppressor genes. However, it is possible, using the same properties of the protein, to make it not suppress, but reinforce the work of these genes. This is what the researchers are striving to achieve. “Although, there are hidden pitfalls here,” explains Anna Prokhorchuk, project manager. “It is necessary to make chimeric Kaiso work only to activate cancer suppressor genes, not the other methylated DNA sequences. This is what we are working at in the Bioengineering Centre jointly with American colleagues.” The ultimate aim of the investigation is to scrutinize the possibility for using Kaiso protein as a target for directional anticancer therapy.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>