Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Vanderbilt-Ingram Cancer Center uncover clue to explain invasive brain tumors

12.01.2006


Researchers at the Vanderbilt-Ingram Cancer Center have uncovered a clue to explain the invasive nature of an aggressive kind of brain tumor called glioblastoma multiforme, or gliomas, and their findings are published in this week’s online edition of the journal Oncogene.



Reid Thompson, M.D., director of Neurosurgical Oncology, and his colleague, Moneeb Ehtesham, M.D., assistant professor of Neurological Surgery and Cancer Biology, found a key receptor plays a role in the spread of this tumor.

"We looked at CXCR4, a molecule which has been shown to play a role in other cancers, and found that the more metastatic aggression relates to this molecule. So, we looked at whether this molecule governed this invasion in gliomas," said Ehtesham.


CXCR4 is a receptor that is found in white blood cells and has been shown to play a key role in regulating the movement of cells in the immune system. Finding something to inhibit CXCR4 could potentially lead to treatment options to prevent cancerous cells from moving to other organs.

In animal models, Thompson and Ehtesham found CXCR4 can, in fact, be linked to cell invasion in glioblastoma. "If we look at a brain cancer model in rodents we can see a difference in CXCR4 expression in invasive and non-invasive cells. We found CXCR4 was expressed in the non-invasive cells, but was much higher in invasive cells, or cells from the core of the tumor and cells that had migrated away," said Ehtesham. Thompson said it was significantly higher, "up to thirty- to fortyfold higher in the invasive cells," he added.

Next, Thompson and Ehtesham looked at CXCR4 more closely, in dish studies. They wanted to determine whether cells that have CXCR4 invade more than cells without the molecule. They induced glioblastoma and forced the cells to migrate, comparing migrating brain tumor cells with the cells at the origin of the cancer. Their findings were consistent with the animal studies -- CXCR4 was again much higher in the migrating cancer cells than in the core of the tumor. Only this time, even higher – sixty- to eightyfold higher, according to Ehtesham.

The researchers then shut down the CXCR4 function of the receptor. What they found was puzzling. Shutting down the CXCR4 weakened its ability to migrate, but it didn’t stop it altogether, just significantly impaired it. "Cancer is finding a way to move around the brain, said Thompson. "This tells us this receptor plays an important role in mediating cell invasion of gliomas," he added.

Ehtesham said it is one of the contributors, but there are many others. The discovery could help experts target new therapies for the aggressive brain tumors. Several studies are under way to look at targeting molecules to specifically shut down CXCR4 for other cancers, but Thompson said no one has linked its expression to the invasive behavior of brain tumor cells, until now. Ehtesham said they are now looking at a neutralizing antibody that binds to CXCR4 and works by sequestering the invasive molecule, as well as small-interference RNA, which is like silencing it by shutting down the expression of the receptor.

"Now we may have a way of blocking the process that allows cancer to spread in the brain, but we will need to know more than just how to shut down these migratory cells to fight this cancer. This is just another tool in our arsenal," said Thompson.

Thompson and Ehtesham are eager to take this research into human trials soon and hope to see benefits for the 17,000-18,000 Americans facing a newly diagnosed glioma each year.

Heather Hall | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>