Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nobelist discovers antidepressant protein in mouse brain

06.01.2006


A protein that seems to be pivotal in lifting depression has been discovered by a Nobel Laureate researcher funded by the National Institutes of Health’s National Institute of Mental Health (NIMH).



"Mice deficient in this protein, called p11, display depression-like behaviors, while those with sufficient amounts behave as if they have been treated with antidepressants," explained Paul Greengard, Ph.D., a Rockefeller University neuroscientist who received the 2000 Nobel Prize in Physiology or Medicine for discoveries about the workings of such neuronal signaling systems. He and his colleagues found that p11 appears to help regulate signaling of the brain messenger chemical serotonin, a key target of antidepressants, which has been implicated in psychiatric illnesses such as depression and anxiety disorders. They report on their findings in the January 6, 2005 issue of Science.

Brain cells communicate with each other by secreting messengers, such as serotonin, which bind to receptors located on the surface of receiving cells. Serotonin selective reuptake inhibitors (SSRIs), medications commonly prescribed for anxiety and depression, compensate for reduction in serotonin signaling by boosting levels and binding of serotonin to receptors. Previous studies have suggested that serotonin receptors are essential in regulating moods and in mediating the effects of SSRIs, but given the complexity of the serotonin system, exactly how these receptors work remains a mystery.


To explore how a particular serotonin receptor (5-HT1B) functions, Greengard and colleagues conducted tests to find out what proteins these receptors interact with in brain cells. They found that 5-HT1B interacts with p11, and according to Greengard, p11 plays a role in the recruitment of receptors to the cell surface where they are more functional.

This finding led the researchers to suspect that p11 levels might be directly involved in the development of depression, anxiety and similar psychiatric illnesses thought to involve faulty serotonin receptors. To test this idea, the researchers examined p11 levels in the brains of depressed humans and "helpless" mice, considered a model of depression since they exhibit behaviors similar to those of depressed humans. They compared these two groups to non-depressed humans and control mice. Levels of p11 were found to be substantially lower in depressed humans and helpless mice, which suggests that altered p11 levels may be involved in the development of depression-like symptoms.

The researchers also examined the effect of treatments designed to boost weak serotonin systems on p11 levels in brain cells by administering to mice two types of antidepressants – a tricyclic, a monoamine oxidase (MAO) inhibitor – and electroconvulsive therapy (ECT).

"These three different ways of treating depression all caused an increase in the amount of p11 in the brains of these mice," said Greengard. "They all work in totally different ways, but in all cases they caused the same biochemical change. So, it’s pretty convincing that p11 is associated with the main therapeutic action of antidepressant drugs."

Since humans and mice with symptoms of depression were found to have substantially lower levels of p11 in brain cells compared to non-depressed animals, Greengard and colleagues hypothesized that if p11 levels were increased, mice would exhibit antidepressant-like behaviors, and if p11 were reduced, mice would exhibit depression-like symptoms.

As hypothesized, mice with over-expressed p11 genes, compared to control mice, had increased mobility in a test that is used to measure antidepressant-like activity. They also had more 5-HT1B receptors at the cell surface that were capable of increased serotonin transmission.

The opposite occurred when researchers molecularly knocked out the p11 gene in mice. Compared to control mice, knockout mice had fewer receptors at the cell surface, reduced serotonin signaling, decreased responsiveness to sweet reward, and were less mobile, behaviors which are considered depression-like. Also, the 5-HT1B receptors of p11 knockout mice were less responsive to serotonin and antidepressant drugs compared to those of control mice, which further implicates p11 in the main action of antidepressant medications.

"Manipulations that are antidepressant in their activity increased the level of the protein and those which are depressant reduce it," said Greengard. "It seems as though antidepressant medications need to increase p11 levels in order to achieve their effect." Future studies should elucidate exactly how antidepressants increase levels of this molecule, he added.

Also participating in the study: Per Svenningsson, Ilan Rachleff, Marc Flajolet, The Rockefeller University; Karima Chergui, Xiaoqun Zhang, Karolinska Institute; Malika El Yacoubi, Jean-Marie Vaugeois, Faculty of Medicine and Pharmacy, Rouen Cedex, France; George G. Nomikos, Eli Lilly and Company.

Latifa Boyce | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>