Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tandem transcripts team together

06.01.2006


In the January issue of the journal Genome Research, two teams of scientists describe a widespread phenomenon in the human genome called transcription-induced chimerism (TIC), where two adjacent genes produce a single, fused RNA transcript. The work has implications for drug development, as well as for understanding mechanisms underlying gene evolution, transcription regulation, and genomic organization.



Dr. Roderic Guigó’s group from the Centre de Regulació Genòmica (Barcelona, Spain), in collaboration with the group of Dr. Stylianos Antonarakis from the University of Geneva (Switzerland), and Dr. Rotem Sorek’s team from Compugen (Tel Aviv, Israel) independently derived estimates that at least 2-5% of the genes in the human genome are involved in these events.

"In a certain way, this phenomenon challenges our very concept of a gene," points out Guigó. "The ’one gene, one protein’ rule has been fundamental to molecular biology. However, as we deepen our understanding of the eukaryotic genome, a picture emerges that challenges this paradigm – not a picture in which the sequences in the genome have distinct functions, but rather one in which the sequences participate in multiple transcripts, encoding molecules with diverse functionality."


Sorek’s team systematically identified over 200 cases of TIC involving 421 human genes. They found that genes involved in TIC events often reside closer together than other gene pairs in the genome. In addition, they discovered that the intergenic sequences of TICs were processed via the same standard eukaryotic splicing machinery that removes introns from RNA transcripts.

Following a similar whole-genome survey of splicing events, Guigó’s laboratory focused on the ENCODE regions, a set of DNA sequences, representing 1% of the genome, that have been chosen by a large research consortium for more rigorous, in-depth analyses. When focusing on these regions, the researchers identified six TIC events (involving 3.6% of tandem gene pairs), only one of which was identified during the whole-genome survey. This indicates that future investigations of specific regions may reveal a greater prevalence of TIC events genome-wide.

Sorek’s team unraveled an interesting gene fusion event involving genes called PIP5K1A and PSD4, which reside side by side on human chromosome 1. These genes produce a fusion product that, during the course of evolution, inserted into a different location in the human genome (chromosome 10), becoming a new gene that is actively transcribed in a variety of tissues.

"Our findings might have applications in drug development," says Sorek. "Recombinant engineered fused proteins are currently being developed as therapeutic proteins by several companies and institutes. The problem is that these proteins often elicit an immune response and therefore, are toxic and cannot be used as efficient drugs. The understanding that some gene pairs are naturally produced as fused proteins might lead, in the future, to the development of non-toxic engineered fused proteins that could be used as drugs."

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>