Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

p53, tumor suppression and aging

02.01.2006


In the January 1 issue of Genes & Development, Dr. Mary Ellen Perry and colleagues validate the p53 inhibitor, Mdm2, as a promising target for cancer therapies.

The p53 tumor suppressor plays a critical role in cancer formation, and many anticancer strategies aim to activate p53 in order to curb tumor formation. Mdm2 is a key inhibitor of p53 and therefore an attractive target to modulate p53 activity in cells. However, conflicting evidence exists regarding whether or not p53-mediated tumor suppression comes at the cost of accelerated aging.

To analyze the effects of reduced Mdm2 levels on tumorigenesis – as well as the potential for unwanted side effects – Dr. Perry’s team used mdm2-hypomorphic mice (that express less Mdm2 protein than normal mice) which have elevated levels of wild-type p53 activity. The researchers found that even a modest decrease (about 20%) in Mdm2 effectively prevents tumor formation and does not lead to premature aging.



Dr. Perry emphasizes that "many people develop cancer at a young age due to increased expression of Mdm2. The possibility that inhibitors of Mdm2 could delay cancer in such people without causing detrimental side effects is bolstered by our demonstration that mice expressing 30-80% the normal level of Mdm2 develop fewer tumors than wild type mice, yet age normally."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>