Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma risk only partially associated vith exposure to UVB from sunlight

21.12.2005


Researchers at The University of Texas M. D. Anderson Cancer Center have found that the risk of developing melanoma, the most deadly form of skin cancer, is only partially associated with exposure to ultraviolet B (UVB) radiation, the rays in sunlight that increase in summer and cause sunburn.

The report in the Dec. 21 issue of the Journal of the National Cancer Institute also indicates that only nonmalignant skin cancers (basal and squamous cell carcinoma) are strongly associated with exposure to UVB radiation.

That does not mean, however, that sunbathing poses a minimal risk of developing melanoma. Researchers say that ultraviolet A (UVA) radiation, the rays in sunlight that reach the deeper layers of skin and are associated with signs of aging, can damage the DNA in melanocytes, the pigment-producing cells that give rise to melanoma.



"Although we have refined the common wisdom that excess sun exposure is always associated with increased risk of skin cancer, the take-home message for the public is still the same - limit sun exposure and use a sunscreen that blocks both UVA and UVB rays," says the study’s lead investigator, Qingyi Wei, M.D., Ph.D., professor in the Department of Epidemiology.

The study is a painstaking analysis of the ability of UVB radiation to damage a cell’s chromosomes. Chromosomal injury is one way cells can become cancerous; damage to the genes that make up the chromosome is another, and Wei already has shown in previous studies that melanoma patients often have a reduced capacity to repair the DNA damage that results from UVB exposure.

In the novel study, researchers looked at how often chromosomes break in cells from skin cancer patients compared with cells from a control group.

Wei and his team of 16 collaborators at M. D. Anderson gathered white blood cells from 469 skin cancer patients treated at M. D. Anderson (238 of whom were diagnosed with melanoma) as well as from 329 cancer-free control subjects.

Using the theory that the ability to induce breaks in a cell’s chromosome is, in part, based on a person’s genes, and would therefore hold true for all types of body cells, the investigators exposed the blood cells to excess UVB exposure. These findings were linked to whether each of the study participants had one of the three forms of skin cancer. They found that UVB radiation affects cell chromosomes more severely in patients with nonmalignant basal and squamous cell carcinoma than those in melanoma patients. The frequency of UVB-induced chromosome breaks was higher in nonmalignant skin cancer patients than in the control group, but was the same in melanoma patients and the control group. In fact, a higher frequency of chromosomal breaks was associated with a more than twofold-increased risk for both basal cell and squamous cell carcinoma, Wei says.

These findings indicate that in skin cells it is better to have broken chromosomes that cause cells to die or acquire a "simple," treatable cancer, than for the skin cells to remain intact but sustain genetic damage that can lead to much more serious cancer, Wei adds.

They also found a strong dose-response relationship among UVB radiation, chromosome breaks and squamous cell carcinoma. Sun exposure increases a person’s risk of developing squamous cell carcinoma. Investigators discovered, however, that the risk of developing basal cell carcinoma increases to a certain point, given exposure to UVB radiation, but does not continue to increase with excess sun exposure. These experimental data fit well to the incidence data of skin cancers in the general population.

Wei says these conclusions may help explain for why nonmalignant skin cancers are so common - more than 1 million cases are diagnosed each year in the United States - and why they are so easy to treat. Squamous skin cells lie near the top of the skin’s layers, while basal skin cells lie near the base of the skin’s layers. In both cases, these cells actively reproduce. When their chromosomes are damaged by sunlight, the cells often die or form a simple kind of cancer at the surface that is nonmalignant and easy to remove by surgery or treat in other ways, he says.

Melanoma, on the other hand, is now known to be resistant to chromosomal breaks from UVB radiation, which means that the cell’s chromosomes stay intact long enough to continually amass genetic damage from UVA radiation, according to previously published data. "This allows the cells to hang in there longer, potentially passing on genetic mutations to daughter cells which can result in a cancer that is not sensitive to treatment," Wei says. "If you think of a chromosome as walls that hold up the house, which is the cell, and DNA as individual bricks, then in common squamous and basal cell carcinoma, UV in sunlight knocks down the walls, and usually these cells die or form a nonmalignant cancer," says Wei.

"But if UV sunlight doesn’t hurt the walls too much, but endangers the house with broken bricks, this can form a much more malignant cancer in which the cell can continue to replicate, passing on to daughter cells genetic mutations that can lead to a dangerous cancer," he says.

According to the National Cancer Institute, close to 60,000 cases of melanoma are expected in 2005, along with more than 7,700 associated deaths.

Stephanie Dedeaux | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

nachricht Biological signalling processes in intelligent materials
18.07.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>