Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists close in on genes responsible for Parkinson’s disease

21.12.2005


Scientists have identified 570 genes that act abnormally during the development of Parkinson’s Disease, a finding which could help doctors predict the likelihood of it developing, and provide targets for new treatments.



The research published in Neurogenetics, by the team from Imperial College London and the University of Liege, Belgium, uses microarrays to analyse brains from Parkinson’s patients. Microarrays are laboratory chips able to pick out which genes are active when different processes are occurring in the brain. When they analysed brains from people with Parkinson’s, they found that out of all 25,000 human genes, regulation of 570 was highly abnormal in Parkinson’s brains compared with non-diseased brains. This is the first study on Parkinson’s disease where all human genes were studied.

The researchers analysed 23 brains from recently deceased patients, 15 affected by Parkinson’s and 8 control brains. The majority of brains were provided by the UK Parkinson’s Disease Society Tissue Bank at Imperial College London.


Dr Linda Moran from Imperial College London and one of the authors of the paper, said: "This research shows there are a considerable number of genes associated with the development of Parkinson’s, potentially providing new clues for how to treat this disease. Now that we can identify these genes it may be possible to develop new therapies to help the increasing numbers of Parkinson’s patients."

The team, led by Professor Manuel Graeber, analysed two parts of the brain which are affected by neurodegeneration in Parkinson’s; the substantia nigra in the mid-brain, and the cerebral cortex. They were able to eliminate around 15,000 genes from any role in Parkinson’s, as they were not found to be active in the substantia nigra, the part of the brain most affected by Parkinson’s.

Dawn Duke, MS, from Imperial College London, and one of the authors of the paper said: "In addition to identifying those genes linked with the development of Parkinson’s, this research has also shown that many of these genes were especially active in Parkinson’s brains. By limiting the activity of these genes, we may be able to control or even stop the development of Parkinson’s."

Tony Stephenson | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>