Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blister-forming protein helps build blood vessels

20.12.2005


How does the body go about generating blood vessels? This question has been studied by a research team from Uppsala University in collaboration with colleagues from the National Institutes of Health in the United States. The findings show that a relatively unknown protein, CLIC4, forms blisters that later develop into the hollow interior of the vessel. The study is being published in the December 23 issue of Journal of Biological Chemistry.



The scientists in the project mapped what proteins change in different ways in connection with the formation of tubular structures, such as blood vessels. It turned out that a large number of proteins changed, and the researchers were able to determine the identity of 27 of them. The most exciting of these proteins is called CLIC4, intracellular chloride channel No. 4.

Not much is known about CLIC4, but studies of a related protein in roundworms show that it participates in the formation of the worm¹s excretion canal. There are several indications that tubular structures are created in a similar manner in primitive organisms and humans.


An important phase in this formation of a tube is the generation of tiny blisters, vesicles, inside the cell. These blisters merge into larger so-called vacuoles, which are the preliminary stages of the hollow interior of the tube. The research team from Uppsala and the United States investigated where CLIC4 is found in blood vessel cells and found the protein in the walls of tiny vesicles inside the cell. Then the scientists saw that the protein is to be found in certain vessels in tumors, where vessels are constantly being generated.

"This indicates that CLIC4 is involved in the formation of vessels," says Lena Claesson Welsh.

By inhibiting the capacity of blood vessel cells to produce CLIC4, the research team was able to show that the protein is needed for a blood vessel to be created.

"This is entirely new information. Previously it was not known what proteins regulate the process when vesicles merge into vacuoles to form the hollow interior of vessels," Lena Claesson Welsh explains.

Intensive research is underway to find out how blood vessels are generated. If we can understand how the tubes are created, we will be able to design better drugs to stop the production of vessels, which is of relevance to a number of diseases, such as cancer, diabetes, and chronic inflammations.

Linda Nohrstedt | alfa
Further information:
http://www.uu.se
http://www.uu.se/aktuellt

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>