Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blister-forming protein helps build blood vessels

20.12.2005


How does the body go about generating blood vessels? This question has been studied by a research team from Uppsala University in collaboration with colleagues from the National Institutes of Health in the United States. The findings show that a relatively unknown protein, CLIC4, forms blisters that later develop into the hollow interior of the vessel. The study is being published in the December 23 issue of Journal of Biological Chemistry.



The scientists in the project mapped what proteins change in different ways in connection with the formation of tubular structures, such as blood vessels. It turned out that a large number of proteins changed, and the researchers were able to determine the identity of 27 of them. The most exciting of these proteins is called CLIC4, intracellular chloride channel No. 4.

Not much is known about CLIC4, but studies of a related protein in roundworms show that it participates in the formation of the worm¹s excretion canal. There are several indications that tubular structures are created in a similar manner in primitive organisms and humans.


An important phase in this formation of a tube is the generation of tiny blisters, vesicles, inside the cell. These blisters merge into larger so-called vacuoles, which are the preliminary stages of the hollow interior of the tube. The research team from Uppsala and the United States investigated where CLIC4 is found in blood vessel cells and found the protein in the walls of tiny vesicles inside the cell. Then the scientists saw that the protein is to be found in certain vessels in tumors, where vessels are constantly being generated.

"This indicates that CLIC4 is involved in the formation of vessels," says Lena Claesson Welsh.

By inhibiting the capacity of blood vessel cells to produce CLIC4, the research team was able to show that the protein is needed for a blood vessel to be created.

"This is entirely new information. Previously it was not known what proteins regulate the process when vesicles merge into vacuoles to form the hollow interior of vessels," Lena Claesson Welsh explains.

Intensive research is underway to find out how blood vessels are generated. If we can understand how the tubes are created, we will be able to design better drugs to stop the production of vessels, which is of relevance to a number of diseases, such as cancer, diabetes, and chronic inflammations.

Linda Nohrstedt | alfa
Further information:
http://www.uu.se
http://www.uu.se/aktuellt

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>