Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer support cells may evolve, fuel tumor growth, study shows

19.12.2005


Findings suggest need to expand targets of new treatments



University of North Carolina at Chapel Hill scientists have demonstrated in a living organism that cancers may cause surrounding supportive cells to evolve and ultimately promote cancer growth.

The new research offers what is believed to be the first evidence that mutations within cancer cells can signal surrounding tissue cells to alter their molecular composition in ways that promote tumor growth and proliferation. Moreover, the findings also suggest that cell mutations that promote cancer progression may arise in cells other than the predominant cancer cell.


The new findings are published as the cover story in today’s (Dec. 16) issue of the journal Cell. While not offering immediate application to the treatment of human cancers, the research indicates that new anti-tumor therapies may be more effective if their targets are broadened to include molecules within supporting cells of the cancer. These additional target cells are in the tumor’s surrounding "microenvironment," or stroma, including the supporting connective tissue that forms the framework of organs such as the breast, colon and prostate. They also are found in the tumor’s blood vessels, or its vasculature.

"Basically, virtually all the studies on genetic changes or changes in gene expression have focused on the cancer cell, on events within the cancer cell itself," said Dr. Terry Van Dyke, professor of genetics and biochemistry and biophysics in the School of Medicine, member of the UNC Lineberger Comprehensive Cancer Center and the study’s senior author. Thus, research focused solely on the predominant cancer cell, such as epithelial cells that form the bulk of many tumors including breast cancer, would be on the accumulated mutations that have allowed the cell to survive and grow unchecked. "But over the last several years, it has become increasingly clear that cancer involves complex interactions among different types of cell compartments, and, as in any organ, these compartments comprise blood vessels, supporting tissue and immune cells," said Van Dyke.

"The interaction between the predominant cancer cell type and other types of surrounding cells is important in the development of disease."

The signals that go back and forth between cells contain selective pressures, not only on the cancer cell itself but also on the surrounding cell, she said.

"Think of it as a microcosm of evolution, such that every change that goes on in the cancer cell can impact cells around it. It’s a back-and-forth cross-talk via which the whole entity evolves, not just a subset of cells within the cancer. It’s an environment where changes in the surrounding cells are selected that will help tumor growth."

Van Dyke’s UNC collaborators in the new research were graduate student Reginald Hill and postdoctoral researcher Dr. Yurong Song. Dr. Robert D. Cardiff, professor of pathology at the University of California at Davis, also collaborated in the study.

Their series of experiments involved a genetically engineered mouse model of prostate cancer developed in Van Dyke’s UNC laboratory. The researchers manipulated epithelial cells – the target cell type for prostate cancer – causing them to divide at an accelerated rate.

First, they found that this accelerated division triggered a signal to fibroblasts, connective cells in the surrounding supporting tissue, to grow and proliferate. The signal then induced a tumor suppressor, p53, within the fibroblasts, which stopped this action.

Thus, a change made only in epithelial cells had an impact on surrounding tissue cells.

Next, the researchers showed that fibroblasts eventually lost p53 function. This resulted in cells continuing to divide and proliferate, thereby fueling the cancer’s growth. "This occurred in 100 percent of the animals studied. It’s a strong selective pressure," Van Dyke said. "Now the whole organ is evolving as a cancer, not just a single population of cells." If the research suggests a need to look at cancer development as a more dynamic process, it also indicates a need for expanding the approach to treatment, said Van Dyke.

"If the changes you’re targeting in the predominant cancer cell are going to affect, say, the supportive tissue, it may be best to develop therapies that hit both types of cell."

In their report, the study authors said further work aimed at more fully understanding the signals, their pathways and the cells’ responses was needed.

They said their findings underscore the dynamic complexity of cell-to-cell interactions and the changing selective microenvironment that drives cancer development.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>