Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs offer power tips

09.10.2001


Hydrogenases could fuel the future.
© J. Peters


The hydrogen-powered Gremlin from 1972. Cost hindered mass production.
© UCLA


Chemists copy bacterial tricks for making clean fuel.

Bacteria are teaching chemists their tips for creating lean, green fuel. US researchers have developed a catalyst based on a bacterial enzyme that converts cheap acids to hydrogen, the ultimate clean power source.

Unlike other fuels, hydrogen is non-polluting: its combustion makes only water, instead of greenhouse gas carbon dioxide or the poison carbon monoxide. Thomas Rauchfuss and colleagues at the University of Illinois at Urbana-Champaign believe they can steal the secrets of hydrogen-generating bacteria to make the gas cheaply and efficiently1.



Such bacteria contain enzymes called hydrogenases, which can make hydrogen gas from acids. Rauchfuss and his team made a synthetic catalyst that efficiently mimics this enzyme. For industrial hydrogen production, such catalysts might be easier to make, modify and maintain compared to living cells. Thus it should be possible to extract fuel from inexpensive, plentiful acids, they hope.

Like natural gas, hydrogen can be burnt and the energy converted directly into electricity in power sources called fuel cells. Prototypes of hydrogen-powered vehicles have been made, but availability of hydrogen is a sticking point. Although it can be made from sea water by electrolysis, this is not economical.

But hydrogen production and breakdown are a standard part of the metabolism of some bacteria in which they help to convert carbon dioxide and nitrogen into biologically useful compounds. Present-day hydrogen-producing bacteria are thought to be similar to those that predominated during the early days of life on Earth, when carbon dioxide and nitrogen are believed to have been major constituents of the atmosphere.

There are two general classes of hydrogenases. In one, the ’active site’ in the enzyme responsible for hydrogen conversion contains a nickel atom and an iron atom; in the other, this site contains two iron atoms. The two iron atoms are linked by a chemical bond, and are attached to other chemical groups including cyanide, carbon monoxide and sulphur-containing groups. The whole ’core’ is wrapped up in a protein coat. The team developed a small molecule that mimics the ’naked’ core of the active site, minus the coat.

The researchers are confident that it should be possible to make a version that dissolves in water, which would be industrially more useful. At present the catalyst dissolves only in organic solvents.


References

  1. Gloaguen, F., Lawrence, J. D. & Rauchfuss, T. B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate. Journal of the American Chemical Society, 123, 9476 - 9477, (2001).

PHILIP BALL | Nature News Service
Further information:
http://www.nature.com/nsu/011011/011011-3.html

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>