Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Rickettsial Pathogens Break Into Cells

16.12.2005


New research by a team of scientists in France and the United States has identified both the bacterial and host receptor proteins that enable Rickettsia conorii, the Mediterranean spotted fever pathogen to enter cells. Understanding how this bacterium interacts with the cells of its host could lead to new therapeutic strategies for diseases caused by related pathogens, including Rocky Mountain spotted fever and typhus.



Pascale Cossart, an HHMI international research scholar at the Pasteur Institute in Paris, together with her postdoctoral fellow Juan Martinez and collaborators in Paris and at Case Western Reserve University in Cleveland, Ohio, has identified the first receptor for a Rickettsial bacterium. Their findings will be reported in the December 16, 2005, issue of the journal Cell.

Rickettsial bacteria are transmitted by fleas, ticks, and lice to humans and other mammals, where they can cause dangerous and sometimes fatal infections. There are two types of Rickettsial pathogens—the spotted fever group, which includes the Rickettsia conorii bacteria studied by Cossart and her colleagues, and the typhus group. Both must live inside cells to survive. Rickettsia have been classified by the National Institute of Allergy and Infectious Diseases (NIAID) as agents with potential for use as tools for bioterrorism.


Mediterranean spotted fever is transmitted by a dog tick. The symptoms are generally mild and respond to antibiotics that shorten the course of the disease. But serious complications occur as much as 10 percent of the time, usually in patients who are elderly or who have some other underlying disease. Left untreated, Mediterranean spotted fever can be deadly.

Cossart and her team demonstrated that the Ku70 protein on the surface of host cells is critical for R. conorii to enter the cell, making it the first Rickettsial receptor ever identified. “This receptor is a subunit of a protein complex present mainly in the nucleus, but also in the cell cytoplasm and at the cell membrane,” said Cossart. “We have thus used several approaches to establish our findings definitively.” Ku70 is probably not the only receptor involved in bacterial entry, she noted.

The researchers found that R. conorii specifically binds to Ku70, and that binding and recruitment of Ku70 at the surface of the host cell are important events in R. conorii’s invasion of mammalian cells. In addition, since Ku70 has previously been shown to control cell death, the new findings suggest that Rickettsia, which—like several other intracellular parasites—prevent cell death in order to multiply inside living cells, may also use this property of their receptor for a succesful infection.

“We found that Ku70 interacts with a bacterial protein called rOmpB, which is present on the surface of Rickettsia bacteria,” Cossart said. “The mechanism underlying this interaction remains unclear, so we are now investigating how rOmpB, expressed by R. conorii, interacts with Ku70 and allows bacterial entry.”

Her team has already shown that Ku70 has to be present in certain well-organized regions of the cell membrane called rafts, and that the protein modifier called ubiquitin modifies Ku70 as soon as the bacteria interact with it. This step is critical for cell entry. “Whether other Rickettsia and other pathogens use Ku70 as a receptor is still unknown,” Cossart said.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>