Standing up to paraplegia with gene therapy

Elena Rugarli and colleagues from the National Neurological Institute in Milan have used gene therapy to save sensory and skeletal muscle nerve fibers from degeneration in mice with hereditary spastic paraplegia (HSP). This strategy, reported online on December 15 in advance of print publication in the January 2006 issue of the Journal of Clinical Investigation, holds promise for many other disorders characterized by nerve degeneration due to loss of function of a known gene.

Hereditary spastic paraplegia (HSP), a neurodegenerative disorder caused by progressive loss of sensory and skeletal muscle nerve fibers (axons), is characterized by weakness, spasticity, and impaired function of the lower limbs. The disorder is often due to mutations in the gene encoding the paraplegin protein. HSP sufferers are ultimately confined to a wheelchair, and currently there is no cure for the disease. In the current study, Rugarli and colleagues have shown that a one-time delivery of normal paraplegin by a viral vector to the spinal motor neurons of mice with HSP, before the onset of symptoms, was able to save axons from degeneration for up to 10 months.

Delivery of this mitochondrial energy-dependent protease improved motor function in the mice and these data show that delivery of an intracellular protein to spinal motor neurons by gene transfer may be useful not only for the treatment of HSP patients but also for those individuals with other forms of peripheral nerve damage of known genetic origin.

TITLE: Intramuscular viral delivery of paraplegin rescues peripheral axonopathy in a model of hereditary spastic paraplegia

AUTHOR CONTACT:
Elena I. Rugarli
National Neurological Institute, Milan, Italy
Phone: 39-02-23942614, Fax: 39-02-23942619, E-mail: rugarli@istituto-besta.it

Media Contact

Brooke Grindlinger EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors