Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key brain antioxidant linked to Alzheimer’s and Parkinson’s

15.12.2005


EAAC1 protein is the main transporter of cysteine into neurons, providing vital antioxidant protection



A study conducted at the San Francisco VA Medical Center has identified a protein found in both mice and humans that appears to play a key role in protecting neurons from oxidative stress, a toxic process linked to neurodegenerative illnesses including Alzheimer’s and Parkinson’s diseases.

The study, led by Raymond Swanson, MD, chief of neurology and rehabilitation services at SFVAMC, identified the protein – known as EAAC1 in mice and as EAAT3 in humans – as the main mechanism through which the amino acid cysteine is transported into neurons. Cysteine is an essential component of glutathione, which Swanson terms "the most important antioxidant in the brain."


It had been thought previously that the main function of the protein was to remove excess glutamate, a neurotransmitter, from brain cells.

"It’s known that neurons don’t take up cysteine directly, and it’s never been clear exactly how it gets there," says Swanson, who is also professor and vice chair of neurology at the University of California, San Francisco. "This study provides the first evidence that EAAC1 is the mechanism by which cysteine gets into neurons – and that transporting cysteine is probably its chief function."

Study findings are currently available in the Advance Online Publication section of Nature Neuroscience.

Antioxidants such as glutathione provide protection from oxidative stress, which kills cells through the "uncontrolled reaction of lipids in the cells with oxygen--basically, burning them out," says Swanson. Since the brain uses a lot of oxygen and is "chock full of lipids," it is particularly vulnerable to oxidative stress, he notes.

In the first part of the study, Swanson and his co-authors observed a colony of mice deficient in the gene responsible for the production of EAAC1 and compared their behavior with that of a colony of normal, or "wild type," mice. They noticed that around the age of 11 months – old age for a mouse – the gene-deficient mice began to act listlessly, not groom themselves properly, and exhibit other signs of senility. In contrast, the wild type mice "looked and acted totally normal," according to Swanson.

Then, in postmortem examination, the researchers found that the brains of the EACC1-deficient mice had abnormally enlarged ventricles – openings within the brain that provide a path for cerebrospinal fluid – while the ventricles of the wild type mice were normal. Enlarged ventricles "also occur in Alzheimer’s patients," Swanson notes.

In addition, it was found that the EAAC1-deficient brains had fewer neurons in the hippocampus, and that all neurons in the hippocampus and cortex showed evidence of oxidative stress, unlike in the wild type mice.

The researchers then compared brain slices from younger mice in both groups. They found that it took ten times less hydrogen peroxide – a powerful oxidant – to kill slices from the EAAC1-deficient mice than it took to kill slices from the normal mice. This demonstrated that brains of mice unable to produce EAAC1 were ten times as vulnerable to oxidative stress as mice with the ability to produce EAAC1.

The researchers also found that the neurons of the EAAC1-deficient mice contained lower levels of the antioxidant glutathione compared to those of the normal mice.

Taken together, these results "support the idea that oxidative stress contributes to aging" in the brain, a well-known concept that Swanson calls "appealing," but difficult to prove or disprove. "This certainly adds credence to the idea," he says.

In the final part of the study, Swanson and his team investigated whether oxidative stress in EAAC1-deficient mice might be reversible.

For several days, a group of gene-deficient mice were fed N-acetylcysteine, an oral form of cysteine that is readily taken up by neurons. When their neuron slices were compared with slices from untreated gene-deficient mice, it was found that N-acetylcysteine "had completely corrected the biochemical defect" in their neurons, recounts Swanson. "Their glutathione levels were normal, their ability to withstand hydrogen peroxide toxicity was normal, and the oxidants we saw in the neurons in response to oxidative challenges were normal."

Based on the results of the current study, Swanson and his group are working to determine whether EAAC1 expression is altered in neurodegenerative illnesses such as Alzheimer’s and Parkinson’s diseases. Should this prove to be the case, says Swanson, then manipulation of EAAC1 levels "might provide a novel approach" to the treatment of these diseases in the future.

Steve Tokar | EurekAlert!
Further information:
http://www.ncire.org
http://www.ucsf.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>