Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key protein involved in neuropathic pain

15.12.2005


A team of researchers led by Université Laval and The Hospital for Sick Children (SickKids) has discovered a protein that plays a major role in neuropathic pain. This discovery, published in the December 16 issue of Nature, paves the way for the development of new diagnostics and treatments for chronic pain.

Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. Many people suffering from neuropathic pain appear normal, but are in agony experiencing lightning-like pain known as allodynia.

This type of pain can alter perception to a point where previously innocuous or even pleasurable stimuli applied to the skin or tissues become extremely painful. It may be experienced after nerve injury or from diseases that affect peripheral nerve function such as diabetes, shingles, or cancer.



After a peripheral nerve injury there is a biophysical change in spinal cord cells called microglia. Microglia are typically considered to be immune cells in the nervous system, but have now been proven to be involved in neuropathic pain.

"We knew that microglia had to communicate with nerve cells in the pain-processing network in the spinal cord. However the mechanism for this communication was not known," said Dr. Michael Salter, co-principal investigator, senior scientist at SickKids, professor of Physiology at the University of Toronto (U of T), and director of the U of T Centre for the Study of Pain. "We discovered that the microglia talk to the nerves cells by releasing Brain-Derived Neurotropic Factor (BDNF)."

When BDNF was injected into the spinal cords of normal mice it resulted in allodynia. When the team made manipulations to block or intercept BDNF signaling from the microglia the in nerve-injured mice the allodynia was reversed.

"We established that the microglia cause chloride ions to increase inside the nerve cells and that BDNF is the mystery mediator," said Dr. Yves De Koninck, co-principal investigator, professor, Department of Psychiatry, Université Laval and director of the Division of Cellular Neurobiology at the Centre de recherche Université Laval Robert-Giffard. "Thus, not only did we discover that BDNF is the chemical mediator, but we also determined how BDNF works."

By a still unknown mechanism, nerve injury results in activation of P2X4 receptors on the microglia, which causes the release of BDNF. BDNF then disrupts inhibition in the spinal cord, which causes spinal relay neurons to send an abnormal signal to pain-processing neural networks in the brain, ultimately causing the experience of aberrant pain.

The research team hopes that this new information on neuropathic pain can be applied to diagnostics. "Effective pain diagnosis is nearly as big a challenge as developing effective pain therapeutics," added Dr. Salter, also Canada Research Chair in Neuroplasticity and Pain. "The gold standard for diagnosing neuropathic pain is history and physical examination. But many people want objective proof that something is pathophysiologically different. We are hoping to develop a probe that can measure the response of microglia in people with peripheral nerve injury."

The team is also looking for ways to devise new kinds of therapeutics, as there is not presently any effective treatment for neuropathic pain.

"This is an important discovery for the millions of Canadians who suffer from debilitating chronic pain that cannot currently be treated. The cost to society is equally devastating and is estimated in the billions of dollars annually," said the Honourable Michael H. Wilson, chair of NeuroScience Canada, one of the funders of this research through the Brain Repair Program, which includes $1.5 million to the team led by Dr. Michael Salter. NeuroScience Canada’s funding partners on the team grant led by Dr. Salter include the Canadian Institutes of Health Research and the Ontario Neurotrauma Foundation.

"With the work of Drs. Salter and De Koninck, we can now focus the research on developing drugs that will target the class of cells responsible for chronic pain. This represents an important shift that could soon provide patients with effective treatments and allow them to be active again in our society," added Mr. Wilson.

Chelsea Gay | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>