Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key protein involved in neuropathic pain

15.12.2005


A team of researchers led by Université Laval and The Hospital for Sick Children (SickKids) has discovered a protein that plays a major role in neuropathic pain. This discovery, published in the December 16 issue of Nature, paves the way for the development of new diagnostics and treatments for chronic pain.

Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. Many people suffering from neuropathic pain appear normal, but are in agony experiencing lightning-like pain known as allodynia.

This type of pain can alter perception to a point where previously innocuous or even pleasurable stimuli applied to the skin or tissues become extremely painful. It may be experienced after nerve injury or from diseases that affect peripheral nerve function such as diabetes, shingles, or cancer.



After a peripheral nerve injury there is a biophysical change in spinal cord cells called microglia. Microglia are typically considered to be immune cells in the nervous system, but have now been proven to be involved in neuropathic pain.

"We knew that microglia had to communicate with nerve cells in the pain-processing network in the spinal cord. However the mechanism for this communication was not known," said Dr. Michael Salter, co-principal investigator, senior scientist at SickKids, professor of Physiology at the University of Toronto (U of T), and director of the U of T Centre for the Study of Pain. "We discovered that the microglia talk to the nerves cells by releasing Brain-Derived Neurotropic Factor (BDNF)."

When BDNF was injected into the spinal cords of normal mice it resulted in allodynia. When the team made manipulations to block or intercept BDNF signaling from the microglia the in nerve-injured mice the allodynia was reversed.

"We established that the microglia cause chloride ions to increase inside the nerve cells and that BDNF is the mystery mediator," said Dr. Yves De Koninck, co-principal investigator, professor, Department of Psychiatry, Université Laval and director of the Division of Cellular Neurobiology at the Centre de recherche Université Laval Robert-Giffard. "Thus, not only did we discover that BDNF is the chemical mediator, but we also determined how BDNF works."

By a still unknown mechanism, nerve injury results in activation of P2X4 receptors on the microglia, which causes the release of BDNF. BDNF then disrupts inhibition in the spinal cord, which causes spinal relay neurons to send an abnormal signal to pain-processing neural networks in the brain, ultimately causing the experience of aberrant pain.

The research team hopes that this new information on neuropathic pain can be applied to diagnostics. "Effective pain diagnosis is nearly as big a challenge as developing effective pain therapeutics," added Dr. Salter, also Canada Research Chair in Neuroplasticity and Pain. "The gold standard for diagnosing neuropathic pain is history and physical examination. But many people want objective proof that something is pathophysiologically different. We are hoping to develop a probe that can measure the response of microglia in people with peripheral nerve injury."

The team is also looking for ways to devise new kinds of therapeutics, as there is not presently any effective treatment for neuropathic pain.

"This is an important discovery for the millions of Canadians who suffer from debilitating chronic pain that cannot currently be treated. The cost to society is equally devastating and is estimated in the billions of dollars annually," said the Honourable Michael H. Wilson, chair of NeuroScience Canada, one of the funders of this research through the Brain Repair Program, which includes $1.5 million to the team led by Dr. Michael Salter. NeuroScience Canada’s funding partners on the team grant led by Dr. Salter include the Canadian Institutes of Health Research and the Ontario Neurotrauma Foundation.

"With the work of Drs. Salter and De Koninck, we can now focus the research on developing drugs that will target the class of cells responsible for chronic pain. This represents an important shift that could soon provide patients with effective treatments and allow them to be active again in our society," added Mr. Wilson.

Chelsea Gay | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>