Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scythe balances life and death during development

14.12.2005


Scythe protein is critical to the normal development of the lungs, kidney and brain, according to St. Jude



A protein called Scythe determines which cells live and which die during the growth and development of the mammalian embryo, according to investigators at St. Jude Children’s Research Hospital.

The St. Jude study is the first to show that Scythe plays a critical role during development of mammals by selectively regulating when and where specific cells either proliferate or undergo apoptosis, the process by which cells self-destruct. Understanding exactly how Scythe balances apoptosis with cell proliferation could provide significant insights into how organs develop in the growing embryo, researchers said.


The St. Jude team showed in laboratory models that in the absence of Scythe the lungs, kidneys and brains develop abnormally and the embryos cannot survive. These defects were caused by the loss of control over both the multiplication of some cells and the process of apoptosis, in which cells self-destruct.

Normally, there is a balance between life and death in the embryo as the various parts of specific organs get "sculpted" out of the growing mass of cells and some cells are eliminated, according to Peter McKinnon, Ph.D., an associate member of the St. Jude Department of Genetics and Tumor Cell Biology. But cells in certain organs of models lacking both copies of the Scythe gene (Scythe-/-) either failed to receive or failed to respond to signals triggering proliferation or apoptosis. The resulting organs were malformed and unable to function properly, he said. McKinnon is the senior author of a report on this work that appears in the December issue of Molecular and Cellular Biology.

"Scythe is critical to the embyro’s ability to survive and develop normally," McKinnon said. "The protein appears to regulate both apoptosis and the multiplication of cells in a way that we don’t yet understand."

Previous work by other researchers suggests that the Scythe protein might work by regulating the folding and activity of the molecules that make up the signaling pathway that controls apoptosis. Scythe was also known to interact with another protein called Reaper to control development of the fruit fly. Therefore, the St. Jude team developed laboratory models lacking both copies of Scythe to study what happens in the gene’s absence. The scientists discovered that major defects in lung development appeared late in the process of embryo development.

Specifically, the lungs were very small and their branching airways were underdeveloped. In addition, there were almost no alveoli--the small air sacs at the end of the smallest airways. Moreover, the kidneys failed to form properly or did not form at all. This showed that Scythe is required for development of both the lung and kidney. The Scythe-/- model also often failed to develop a normal brain. In the absence of Scythe some parts of the brain grew abnormally large and contained excessive amounts of water.

Finally, the St. Jude team showed that cells from the Scythe-/- model responded to ionizing radiation and hydrogen peroxide by undergoing apoptosis like normal cells. However, these cells were more resistant to menadiaone and thapsigarin--two chemicals known to trigger apoptosis. But when the investigators put Scythe genes back into the cells, they became sensitive to these treatments and underwent apoptosis.

"These chemicals affect the movement of calcium inside a special structure where proteins are made," McKinnon said. "This showed that Scythe helps trigger apoptosis in specific circumstances. Further studies are currently underway to elucidate this process."

Part of the Scythe molecule resembles that of molecules known to be involved with protein destruction, according to Fabienne Desmots, the postdoctoral researcher in the Department of Genetics and Tumor Cell Biology who did much of the work on this project. This finding suggests that Scythe might help to regulate the signaling molecules that are involved in either apoptosis or cell proliferation.

"By having a hand in controlling the levels of key proteins involved in these processes, Scythe appears to indirectly balance life and death decisions in the growing embryo," said Desmots, who is the first author of the paper. Desmots is now at the University of Rennes in France.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>