Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancerous Cells Should Be Urged To Suicide

12.12.2005


When fighting cancerous growths, it is very important to use internal cellular mechanisms on top of various external impacts on the tumor. Among internal mechanisms is cells’ ability for “suicide” - programmed cell death, which is called apoptosis. The cells resort to apoptosis when something is irreparably broken in them and the cells need to perform self-destruction to avoid causing damage to the entire organism. Apoptosis is executed by intracellular protease enzymes (they are called caspases). Caspases destroy target proteins located in the cytoplasm and the cell’s nucleus. Cellular genome is also the target of caspases’ action. Caspases’ activation occurs as a result of a complicated chain of biochemical reactions which are launched specifically by special receptors on the cellular membrane. Specialists call them dreadly – “receptors of death”.



Unfortunately, cancerous cells, on top of their ability for uncontrolled reproduction, also possess a striking capability for survival. As the contents of caspases’ predecessors – procaspases – and accordingly that of caspases may be reduced in the cancerous cells, induction of apoptosis in these cells is difficult. If the content could be increased, physicians would get an efficient instrument to fight this fatal disease. Solution of this problem is addressed by the joint project of Russian and American researchers from the Center for Theoretical Problems of Physicochemical Pharmacology (project manager - Mikhail Khanin, Doctor of Science (Engineering), Professor, the Lenin prize laureate) and Mayo Clinic, Rochester, Minnesota, USA (project manager – Scott Harold Kaufmann, prominent researcher of apoptosis, Professor, Doctor of Philosophy and Medicine).

The project has been sponsored by the international foundation CRDF and the Federal Agency for Science and Innovations (Rosnauka). The researchers are planning to solve the task by a combination of mathematical modelling and biochemical methods. “Mathematical models are increasingly recognized in recent years as an efficient method for investigation of execution behaviour of complicated biochemical systems, points out Mikhail Khanin. These systems are nonlinear, and their behavior has typical properties; for example, threshold effects. All these dynamic properties can be predicted and described with the help of mathematical modelling and subsequent computer simulation.”


Apoptosis – is a cellular suicide, but the decision about it is made not only by the cell itself but also the immune system, which “gives an order” having discovered fatal injuries in a certain cell. And the cell is at constant alert to fulfill the order. This can be compared to a person who, leaving home, takes a rope and a bar of soap just in case. Thus, any cell carries the mechanism of death inside. The “receptors of death” on the cellular membrane stick out by one end, a molecule released by the immune system cells comes up to this end and forms a complex with the receptor. After that, the receptor transmits a signal inside the cell to activate caspases. This is how apoptosis is launched.

To build the mathematical model for caspases’ activation, researchers should know numerical values of all kinetic constants of apoptosis biochenical reactions. Kinetic constants determine the enzymatic reactions’ rate. The point is that only a small part of necessary kinetic constants is determined by biochemical methods. The rest can be calculated with the help of optimization mathematical models. In this case, the basic principle of physiological (and biochemical) systems’ organization – principle of optimality – helps the researchers. This means, for example, that the system spends minimal energy to perform its functions in the organism. The same is applicable to apoptosis – it is necessary to destroy proteins and the genome quickly enough and at minimal expense.

So, at first phase, the researchers need to calculate kinetic constants of reactions and then to build mathematical model of caspases’ activation dynamics, i.e., in fact, the apoptosis induction model. The model’s accuracy will be appreciated by coincidence of modelling and biochemical research results.

Having the mathematical model of apoptosis dynamics available, the researchers will be able to apply it to find the ways of apoptosis induction reinforcement in various types of malignant cells.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>