Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do boxers differ from poodles? Researchers collar genomes

08.12.2005


As any dog lover knows, no two breeds are identical. Some dogs are perfect for sloppy kisses. Others make fierce guardians. Still others resemble tiny, fluffy toys. Now, two new studies by scientists at The Institute for Genomic Research (TIGR) and collaborators reveal the genomic differences beneath such canine characteristics.



In the December issue of Genome Research--a special issue devoted to dog genomes--TIGR researchers Ewen Kirkness and Wei Wang compared the genome sequences of two dogs, a standard poodle and a boxer. Finding key genetic differences between the two dogs, the researchers went on to compare those telltale genetic variations in the genomes from nine additional dog breeds--beagle, Labrador retriever, German shepherd, Italian greyhound, English shepherd, Bedlington terrier, Portuguese water dog, Alaskan malamute, and rottweiler--and five genomes of wild canids (four types of wolves and a coyote).

"This work demonstrates a significant amount of variation that you can see between individual dogs at the genomic level," says Kirkness, lead investigator of the project, funded by TIGR. "That variation can now be exploited to study the differences between dogs, their diseases, development and behaviors." More broadly, Kirkness adds, the comparisons illustrate evolutionary influences that can shape mammalian genomes.


In the study, the scientists first compared the two most complete canine genomes available. Those genomes belong to Shadow, a standard poodle whose genome was published by TIGR in 2003, and Tasha, a boxer sequenced by the Broad Institute of Cambridge, Massachusetts, in 2004.

To compare Shadow’s and Tasha’s genomes, the researchers tracked short interspersed elements (SINEs)--stretches of DNA that occur randomly in the genomes of many organisms. SINEs are inserted near or within genes, often turning the expression of those genes up, down or even off. The scientists found that the poodle and boxer differed in their content of SINEs at 10,562 locations in their genomes. Broadening the study to compare SINEs among the additional nine dog breeds and five wild canids, the scientists estimated that the overall dog population contains at least 20,000 SINE differences.

To genomics researchers, variable SINEs can act as signposts for specific genes linked to disease or traits. The dog is a unique genomics model. Through selective breeding of dogs, humans have created the highest degree of physical and behavioral differences seen within a species. Roughly 400 dog breeds exist, with specific breeds predisposed to heart disease, cancer, blindness, deafness and other common disorders. Identifying genes responsible for diseases or physical traits may be easier to do in dogs that have been genetically selected.

In a second study, published in the December 8 issue of Nature, researchers from 15 institutions describe a high-resolution draft of the boxer genome. This work includes a high resolution map of canine single nucleotide polymorphisms (SNPs), based largely on a comparison of the boxer and poodle sequences. Eventually, Kirkness predicts, efforts to document genetic differences between dogs will lead to major health gains for the animals. And perhaps us, too: A dog genome is estimated to include some 19,300 genes--nearly all corresponding to similar human genes.

Kathryn Brown | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>