Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do boxers differ from poodles? Researchers collar genomes

08.12.2005


As any dog lover knows, no two breeds are identical. Some dogs are perfect for sloppy kisses. Others make fierce guardians. Still others resemble tiny, fluffy toys. Now, two new studies by scientists at The Institute for Genomic Research (TIGR) and collaborators reveal the genomic differences beneath such canine characteristics.



In the December issue of Genome Research--a special issue devoted to dog genomes--TIGR researchers Ewen Kirkness and Wei Wang compared the genome sequences of two dogs, a standard poodle and a boxer. Finding key genetic differences between the two dogs, the researchers went on to compare those telltale genetic variations in the genomes from nine additional dog breeds--beagle, Labrador retriever, German shepherd, Italian greyhound, English shepherd, Bedlington terrier, Portuguese water dog, Alaskan malamute, and rottweiler--and five genomes of wild canids (four types of wolves and a coyote).

"This work demonstrates a significant amount of variation that you can see between individual dogs at the genomic level," says Kirkness, lead investigator of the project, funded by TIGR. "That variation can now be exploited to study the differences between dogs, their diseases, development and behaviors." More broadly, Kirkness adds, the comparisons illustrate evolutionary influences that can shape mammalian genomes.


In the study, the scientists first compared the two most complete canine genomes available. Those genomes belong to Shadow, a standard poodle whose genome was published by TIGR in 2003, and Tasha, a boxer sequenced by the Broad Institute of Cambridge, Massachusetts, in 2004.

To compare Shadow’s and Tasha’s genomes, the researchers tracked short interspersed elements (SINEs)--stretches of DNA that occur randomly in the genomes of many organisms. SINEs are inserted near or within genes, often turning the expression of those genes up, down or even off. The scientists found that the poodle and boxer differed in their content of SINEs at 10,562 locations in their genomes. Broadening the study to compare SINEs among the additional nine dog breeds and five wild canids, the scientists estimated that the overall dog population contains at least 20,000 SINE differences.

To genomics researchers, variable SINEs can act as signposts for specific genes linked to disease or traits. The dog is a unique genomics model. Through selective breeding of dogs, humans have created the highest degree of physical and behavioral differences seen within a species. Roughly 400 dog breeds exist, with specific breeds predisposed to heart disease, cancer, blindness, deafness and other common disorders. Identifying genes responsible for diseases or physical traits may be easier to do in dogs that have been genetically selected.

In a second study, published in the December 8 issue of Nature, researchers from 15 institutions describe a high-resolution draft of the boxer genome. This work includes a high resolution map of canine single nucleotide polymorphisms (SNPs), based largely on a comparison of the boxer and poodle sequences. Eventually, Kirkness predicts, efforts to document genetic differences between dogs will lead to major health gains for the animals. And perhaps us, too: A dog genome is estimated to include some 19,300 genes--nearly all corresponding to similar human genes.

Kathryn Brown | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>