Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A leap forward in understanding cholera

06.12.2005


Cholera remains a public health problem in countries without access to safe drinking water and adequate sanitation. Researchers are trying to come up with theoretical models for cholera that allow them to understand how an outbreak happens, how it can best be contained, and how it might be prevented. Until now, the existing cholera models have not been able to describe and explain actual outbreaks very well. Taking new experimental data into account, David Hartley and colleagues (of the University of Maryland) now report a major advance in cholera modelling in the international open-access medical journal PLoS Medicine.


Caption: Scanning electron micropgaph of Vibrio cholerae. (Photo: Hartley et al.)


Transmission electron micrograph of Vibrio cholerae. (Photo: Hartley et al.)



In 2002, Andrew Camilli and colleagues reported that cholera bacteria isolated from the stools of sick patients were much more infectious than those found in contaminated water. (They compared the two by exposing mice to a mix and determining which bacteria made the mice sick.) Those researchers proposed that the infection of a human patient (i.e., the exposure to an environment that is quite different from their regular freshwater ponds) changes the cholera bacteria. As a result, for a short period of time, the bacteria become more infectious.

The study caught the attention of David Hartley and colleagues, who saw a chance to improve the modeling of cholera epidemics. Hartley was interested because Camilli’s results shed new light on a fundamental question in cholera epidemiology: what is the relative importance of human-to-human infection(i.e. fecal to oral) versus environment-to-human infection (through contaminated food or water)? If the infective dose of bacteria that have become hyperinfectious because of recent passage through a human host is much lower than that of bacteria from the environment, this would support a crucial role of human-to-human transmission in cholera epidemics.


Hartley and colleagues found that incorporation of the existence of a hyperinfectious state into their models resulted in a much better fit with the observed explosive epidemic patterns of past cholera outbreaks. On one hand, this result lends theoretical support for Camilli’s results and suggests that his findings in laboratory animals have clinical relevance. On the other, it strongly suggests that human-to-human transmission is crucial for cholera epidemics and pandemics, and that health measures must focus on minimizing the risk of transmission of the short-lived hyperinfectious form of the bacterium. There is also the intriguing possibility that similar hyperinfectious states exist for other bacteria, something that seems well-worth exploring.

Paul Ocampo | EurekAlert!
Further information:
http://www.plos.org
http://www.plosmedicine.org

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>