Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of Type II Collagen in rheumatoid arthritis

05.12.2005


Study sheds new light on this critical protein’s involvement in autoimmunity and chronic, corrosive joint inflammation



Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints, which gradually erodes the cartilage and bone. The agents of destruction include inflammatory cells, cytokines, and protein-degrading enzymes known as matrix metalloproteinases (MMPs). The vicious cycle begins when inflammatory cells infiltrate the tissue lining the joints and consume excess oxygen. In addition to unleashing MMPs, the oxidative stress provokes non-enzymatic glycation – a chemical binding of sugar molecules and proteins. Telltale signs of glycation have been found in blood, urine, and synovial fluid of RA patients.

The primary protein in cartilage, Type II Collagen (CII) is crucial to joint health and function. Yet, the involvement of CII in the process of joint inflammation has proven difficult to substantiate. To gain a clearer understanding of CII’s role in the pathogenesis of RA, researchers at Queen Mary, University of London and others studied its behavior within an inflamed joint, when modified by oxidants linked to inflammation or by ribose, a five-carbon sugar common to all living cells. Featured in the December 2005 issue of Arthritis & Rheumatism, their findings support CII’s potential contribution to antibody binding and RA’s devastating progression.


For their investigation, the researchers collected blood serum samples from 31 RA patients. Between the ages of 65 to 93 years, the patients had disease in varying stages and were receiving different treatments. For control purposes, serum samples were also collected from 41 patients with other inflammatory joint diseases, including osteoarthritis and lupus, as well as back pain, osteoporosis, and gout. Both RA and non-RA samples were analyzed for their ability to bind to pure and natural CII, obtained from bovine cartilage, and to CII that had been chemically modified. The modified CII included three oxidants present in the rheumatic joint – hydroxyl radical, hypochlorous acid, and peroxynitrite – and ribose. The results were evaluated by a state-of-the-art 3-D fluorescent profile, followed by enzyme-linked immunosorbant assay (ELISA) and Western blotting.

Of the 31 RA serum samples analyzed, only 3 showed antibody binding to natural CII – affirming this protein as an innocent bystander in autoimmunity and its inflammatory toll on the joints. However, the percentage of samples that exhibited antibody binding increased 4-fold when tested with modified CII. In fact, 45 percent of all RA samples were assessed with moderate to strong antibody binding reactions. CII treated with hypochlorous acid was the most reactive, followed by CII treated with peroxynitrite, glycation, and hydroxyl radical, respectively. In contrast, only 1 non-RA sample showed strong antibody binding to modified CII.

"The present findings support the possibility that chemical modification of self antigens, in RA in particular and in inflammation in general, is the cause of formation of neoepitopes," reflects the study’s leading author, Ahuva Nissim, Ph.D. "We propose that the oxidative modification of CII creates a CII autoantigen." This hypothesis has important implications for the further study and enhanced understanding of the pathology of RA – a complex autoimmune disease.

Amy Molnar | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/arthritis

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>