Gladstone researchers identify new drug target for Alzheimer’s disease

Researchers at the Gladstone Institute of Neurological Disease have identified a potential new way to stop brain cell death related to Alzheimer’s disease.

Working with cell cultures, the scientists investigated how amyloid beta proteins, which build up in the brain tissue of people with Alzheimer’s disease, kill neurons. The cell cultures were established from brain tissue of laboratory rats. Study findings showed that amyloid beta could be prevented from causing neuronal cell death with a compound called resveratrol, which is also found as a natural ingredient in red wine.

“Our study suggests that resveratrol and related compounds may protect against neuronal loss associated with Alzheimer’s disease,” explains senior author Li Gan, PhD, a staff research investigator at the Gladstone Institute of Neurological Disease and an assistant professor of neurology at UC San Francisco. “This could certainly open up new avenues for drug development.”

The research results are reported in the December 2 issue of the Journal of Biological Chemistry.

According to the research team, it was particularly interesting that the beneficial effect of resveratrol was not due to a direct impact on amyloid beta or on neurons but rather on other types of brain cells, called microglia.

Microglia are the immune cells of the brain. They can protect or hurt neurons, depending on which of their powerful defense or attack pathways are activated. The investigators found that amyloid beta triggers a pathway in microglia that makes them attack neurons with poisonous chemicals. A key mediator in this pathway is a protein called NF-kB, which resveratrol happens to block. Without resveratrol, amyloid beta activates NF-kB in microglia, turning them into powerful neuron killing machines. Researchers found that, in the presence of resveratrol or of other molecules that blocked NF-kB, microglia were well behaved, and amyloid beta was unable to harm the neurons.

The study thus pinpoints NF-êB as an important contributor to the destructive power of amyloid beta, making it a key drug target, and it singles out resveratrol as holding the most promise for therapeutic intervention.

Media Contact

John Watson EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors