Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Normal chromosome ends elicit a limited DNA damage response

24.11.2005


Researchers at the Salk Institute for Biological Studies discovered that cells co-opted the machinery that usually repairs broken strands of DNA to protect the integrity of chromosomes. This finding solves for the first time an important question that has long puzzled scientists.



The natural ends of chromosomes look just like broken strands of DNA that a cell’s repair machinery is designed to fix. But mending chromosome ends, or telomeres, would set the stage for the development of cancer in successive generation of cells.

To prevent the cell’s DNA repair machinery from confusing telomeres with broken strands of DNA that need to be repaired, the tips of chromosomes are tucked in and shielded by a phalanx of proteins, forming a protective "cap".


Ironically, to form this protective structure at the end of chromosomes, nature solicited help from the very same repair machinery whose misguided repair attempts the cap is supposed to hold at bay, reports the Salk team, led by Jan Karlseder, in the current issue of Molecular Cell.

Scientists had long surmised that the protective telomere-protein complex had to unravel when enzymes need to gain access in order to copy the chromosome’s DNA in preparation for cell division. And if so, they wondered, why didn’t the presumably exposed chromosome ends trigger a DNA damage response?

Turns out they do, at least to a limited extend.

"During a small window right after DNA replication, when the cell gets ready for cell division, chromosome ends are exposed," says research fellow and first author Ramiro Verdun who emphasizes that, "it would be very unhealthy for the cell if it happened at any other time."

In addition, Verdun and his colleagues found that several well-known members of the DNA damage response machinery – recruited by the now unprotected telomeres - congregate at the tips of chromosomes.

"We believe that the localization of repair proteins to chromosome ends, and detection of telomeres as damage at this precise time are necessary to trigger the re-formation of a protective telomeric structure," says Karlseder, an assistant professor in the Regulatory Biology Laboratory.

In contrast to damaged strands of DNA, they hypothesize, the repair process never gets fully underway at telomeres. Instead, the very tips of the chromosomes are looped back, tucked in and covered with telomeric proteins.

"The cell tries to fix everything to make sure that the genetic information is safe and complete for the next generation of cells," says Verdun. "But in the case of healthy chromosome tips or telomeres, repair would have disastrous consequences," he adds.

Repairing telomeres would randomly fuse whole chromosomes end-to-end. During the next cell division the sorting mechanism, which ensures that each daughter cell receives a full complement of chromosomes would inevitably rip the fused chromosomes apart.

"Such fusion breakage cycles scramble the genome over time, and cause genome instability, which is a hallmark of cancer cells," explains Karlseder. "This demonstrates the importance of telomeres in preserving genome integrity and preventing cancer development."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>