Computer Simulation In Drug Development Helps Reducing Animal Tests

Scientists at the Technische Universität Dresden/Germany are significantly involved in a European research project entitled “BioSim“ which aims at utilising biosimulation as a new tool in drug development. The use of computer simulations will provide more objective data which helps to develop drug compounds more effectively and to reduce investment in drug development drastically. Above all the number of animal tests as well as clinical studies with volunteers will decrease substantially.

“We intend to translate the existing knowledge of drug metabolism and the operating modes of several organs into mathematical models. These serve to perform complex computer simulations of the involved biochemical processes”, says assistant professor Dr Martin Bertau, biochemist at the Department of Chemistry and Food Chemistry at the Technische Universität Dresden.

The highly ambitious scientific “Network of excellence“ – also called “BioSim” – has been funded with 10.7 million euros by the European Union for a five year period since December 2004 and brings together internationally leading European research groups in the fields of life sciences, medicine and mathematics. The activities are coordinated by Professor Erik Mosekilde, Institute of Physics at the Danish University of Technology in Kgs. Lyngby. On the part of the pharmaceutical industry Apogepha Arzneimittel GmbH is involved in Dresden. The network is completed by European regulatory agencies as well as the European Federation of Pharmaceutical Sciences.

In addition to a model of drug metabolism the European activities comprise approaches to the biosimulation of diabetes, cardiac arrhythmia, neurologic/psychiatric disorders and tumor diseases.

At the TU Dresden, a working group of nine scientists headed by assistant professor Dr Martin Bertau of the Institute of Biochemistry as well as researchers from the Institute of High-Performance Computing participate in “BioSim“. Recently, their novel approach in predicting drug metabolism has been successfully demonstrated, using the model drug compound chloramphenicol.

Media Contact

PD Dr Martin Bertau alfa

More Information:

http://www.tu-dresden.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors