Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists observe how a close bond activates the immune system

18.11.2005


The immune system is highly complex. The cast of characters alone required to marshal an immune response to a foreign invader can number in the millions as the body’s soldiers, T cells, are called into action. What triggers this complex response begins when T cells and dendritic cells, another type of immune cell, form a kind of molecular embrace, or immunological synapse, to relay information about intruders.



The communication between these immune cells hasn’t been well understood because scientists had no suitable techniques to manipulate it. Now that problem has been solved. In a new study scientists at New York University School of Medicine and the University of California, Berkeley, report that they have observed the exchange of information between immune cells that is required to spark a body wide response to infection.

"This is the first time that anyone has been able to physically manipulate the immunological synapse and measure the effect on T cell signaling," says Michael L. Dustin, Ph.D., the Irene Diamond Associate Professor of Immunology and Associate Professor of Pathology at NYU School of Medicine, and one of the lead authors of the study.


The research by Dr. Dustin and Jay T. Groves of University of California, Berkeley, and their colleagues is a fusion of biology and nanotechnology--devices at the molecular scale. The study sheds new light on the workings of T cells, the body’s most specific and potent line of defense against viruses, bacteria, and other pathogens, says Dr. Dustin who is also an investigator in the molecular pathogenesis program at NYU’s Skirball Institute of Biomolecular Medicine.

The study, published in the November 18, 2005, issue of Science, reveals how T cells analyze and react to the signals of infection at the immunological synapse.

Every T cell wears a unique molecule, called a T cell antigen receptor, on its surface that it uses to detect pieces of foreign proteins called antigens. These receptors exist in astonishing, and for all practical purposes, unlimited variety--allowing the body to recognize any pathogen it might encounter.

Just as police need evidence of a crime to begin an investigation, T cells must recognize a specific antigen before they start to fight an infection. Dendritic cells constantly scour the body for antigens and present these to T cells for review in the lymph nodes. It is a demanding job. "Just 10 dendritic cells can show viral antigens to over a million T cells in a day," says Dr. Dustin.

Once a T cell’s antigen receptor finds an antigen match, the T cell forms an immunological synapse with a dendritic cell through which it queries the dendritic cell for additional information about the antigen and its source in the body. Is the antigen a danger or simply a harmless food protein? The interrogation may last hours, and if the antigen is deemed a threat the T cell starts multiplying, eventually producing thousands of copies of itself. These T cell clones are capable of killing invaders outright and marshaling other cells to destroy them.

In the new study, Gabriele Campi, a graduate student in Dr. Dustin’s laboratory, and Kaspar Mossman, a graduate student of Dr. Groves’s, created a synthetic dendritic cell using purified antigen and adhesion molecules (molecules that the cell can grip) in a thin fluid coating on a glass surface. In prior studies the antigen was free to move over the entire glass surface, but in this study they set up miniscule chrome barriers, allowing them to modify the pattern of T-cell antigen receptor clusters in the immunological synapse.

Previous research has shown that T cell receptors cluster in a bull’s eye-pattern at the interface between the T cell and the synthetic dendritic cell but the significance of this arrangement has been unknown. Thanks to the chrome barriers, Dr. Dustin and his colleagues discovered that the T cell receptor signal is strongest when they are physically held in the outer ring of the bull’s eye rather than the center.

"We locked the receptors in the periphery and saw enhanced signaling over a prolonged period of time. It was quite a surprise," says Dr. Dustin. Researchers had speculated that the concentrated bull’s eye structure somehow allowed T cells to maintain their state of activation. But the new work shows that it is actually the outer edge of immunological synapse that boosts activation, not the center.

Dr. Dustin’s group is now conducting additional experiments to see if dendritic cells actively present proteins to T cells in patterns that stimulate the periphery of the bull’s eye in the immunological synapse, using molecular organization to provide information about the precise nature of the threat associated with the antigen.

Pam McDonnell | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>