Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researcher uncovers new gene for fear factor

18.11.2005


Findings could pave the way to treatment of anxiety disorders

Rutgers geneticist Gleb Shumyatsky has discovered a gene that controls both innate and learned forms of fear. The gene, known as Stathmin or Oncoprotein 18, is highly concentrated in the amygdala, a key region of the brain that deals with fear and anxiety.
"This is a major advance in the field of learning and memory that will allow for a better understanding of post traumatic stress disorder, phobias, borderline personality disorder and other human anxiety diseases," said Shumyatsky, an assistant professor of genetics at Rutgers, The State University of New Jersey. "It will provide important information on how learned and innate fear is experienced and processed, and may point the way to apply new therapies."


In collaboration with Nobel laureate Eric Kandel at Columbia University and Vadim Bolshakov at Harvard Medical School, Shumyatsky had previously identified another gene that controlled learned but not innate fear. The new research being reported by Shumyatski, Kandel et al. is the first major attempt to analyze how both learned and innate fear is controlled at the molecular level.

Shumyatsky, his collaborators and their laboratory colleagues have been able to correlate changes in the expression of Stathmin to changes in short-term or long-term strength of nerve impulses and fear responses. They relied on a combination of mouse genetics, cellular electrophysiology and behavior. The team’s collaborative findings are presented in the Nov. 18 issue of the journal Cell Online.

Stathmin knockout mice, or mutants bred to be deficient in this gene, showed an increase in the amount of microtubules. These are the building blocks of the dendrite skeleton and also serve as paths for certain proteins to follow, proteins that govern the strength of the connections between neurons (synapses). In the absence of Stathmin, microtubule dynamics (meaning the speed and flexibility of building these paths) are likely to be decreased and may lead to the weakening of the synaptic connections.

This is consistent with a significant reduction in long-term potentiation or LTP – the lasting, strengthened electrical connections between neurons that are regarded as a molecular model for memory. The reduction was specifically observed in pathways incoming to the amygdala in the knockout mice.

The microtubule increase, and the LTP decrease, may be at the root of the noted failure in the mice to remember the lessons of learned fear, such as avoiding places that gave electric shocks. In addition, the researchers analyzed Stathmin-deficient mice for their anxiety levels by recording their performance in mazes. Mice instinctively avoid open spaces, but the knockout mice showed no fear and consistently explored more open areas than normal mice. Thus, reductions in innate fear behaviors, such as avoiding open spaces as opposed to "safer" areas with less exposure, correlated with the absence of Stathmin.

Shumyatsky explained that the difference between the earlier research paper and the current one is that the first described a gene that is expressed in the learned fear circuitry and controls ONLY learned fear but not innate fear. The new paper describes a gene that controls both learned AND innate fear. This work therefore emphasizes the importance of local gene expression in the neural circuits responsible for specific behaviors. In addition, Shumyatsky said that the gene is a negative regulator of microtubule formation and consequently microtubule dynamics are important for fear expression and fear learning.

"This study provides genetic evidence that amygdala-enriched Stathmin is required for the expression of innate fear and the formation of memory for learned fear," the authors concluded. "Stathmin knockout mice can be used as a model of anxiety states of mental disorders with innate and learned fear components (and) these animal models could be used to develop new anti-anxiety agents," they added.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht Scientists coax proteins to form synthetic structures with method that mimics nature
15.01.2019 | University of Texas at Austin

nachricht DNA library of apoid wasps published
15.01.2019 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>