Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zooming in on the protein-conducting channel

17.11.2005


Researchers have gained the most detailed view yet of the heart of the translocon, a channel through which newly constructed proteins are inserted into the cell membrane. The process of transporting proteins across or into membranes is a critical function that occurs in every cell.



Howard Hughes Medical Institute investigator Joachim Frank at the Wadsworth Center and his colleagues reported their detailed study of the translocon’s core, called the protein-conducting channel (PCC), in an article published in the November 17, 2005, issue of the journal Nature. Co-lead authors on the paper were Kakoli Mitra in Frank’s laboratory and Christiane Schaffitzel of the Eidgenössische Technische Hochschule Hönggerberg in Switzerland, who is in the laboratory of the other senior author, Nenad Ban. Other co-authors were from the Scripps Research Institute and the State University of New York at Albany.

The researchers studied the PCC, which grabs newly made protein as it is extruded from the ribosome’s protein synthesis machinery. The PCC then opens either a pore that is perpendicular or lateral to the cell membrane to feed the new protein either across or into the membrane.


For the studies, the Swiss researchers created a complex comprising the PCC from E. coli attached to a ribosome that contained a newly forming protein segment. The ribosome is the massive protein-RNA complex that constitutes the cell’s protein-making machinery.

Mitra explored the structure of this PCC-ribosome complex using three-dimensional cryogenic electron microscopy (cryo-EM), as well as computational methods. Three-dimensional cryo-EM is one of the few techniques capable of visualizing large, dynamic molecules.

In preparing for cryo-EM, researchers immersed the PCC-containing complex in water and then abruptly froze it in supercold liquid ethane. The rapid freezing imprisoned the complex in vitreous ice, a glassy non-crystalline form of ice, thus preserving its native structure. Using an electron microscope with a low-intensity beam to avoid damaging the molecules, scientists then obtained images of thousands of captive protein complexes. Next, they used computer image analysis to produce detailed, three-dimensional maps of the complex in two different states from the low-contrast, noisy images produced by the electron microscope.

“What we have achieved is a huge jump in resolution of this complex,” said Frank. “Even so, this resolution would not allow us to study the complex in atomic detail, or even see individual helices.” He said the results from the cryo-EM analysis were informed by detailed x-ray crystallographic data on the PCC structure done by other researchers. In x-ray crystallography, an x-ray beam is directed through crystals of a target protein. As the x-rays pass through the crystal, they are diffracted. Researchers can then analyze the diffraction pattern to determine the atomic structure of the protein.

The analysis by Frank and his colleagues revealed that each channel consists of two PCC subunits joined in a clamshell arrangement. The cryo-EM data also revealed two different arrangements of the PCC -- one that was apparently in the functional, or “translocating” state, and one in a non-translocating state.

X-ray crystallography data from the lab of HHMI investigator Tom A. Rappaport suggested that the halves of the PCC clamshell were joined in a back-to-back arrangement. However, said Frank, x-ray crystallographic structures often do not represent the arrangements of proteins in their native functional state.

Thus, he and his colleagues applied a computational analytical method called “normal mode-based flexible fitting” (NMFF) to model how well the two possible channel structures could explain the structural data from cryo-EM. The NMFF method was developed and applied by co-authors Florence Tama and Charles Brooks of the Scripps Research Institute. The technique provides dynamic information on the multitude of vibrations and motions that complex molecules preferentially undergo.

NMFF analysis revealed that the cryo-EM data were best explained by a model in which the two PCC clamshells were joined in a “front-to-front” arrangement. This arrangement yielded significant insight into how the channel functions to translocate proteins across or into membranes, said Frank.

“Now that we have these new insights into the architecture of the PCC in its translocating, and possibly non-translocating state, we can explore the mechanisms of perpendicular versus lateral transport,” Frank said.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>