Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies show apo A-I Milano gene transfer and antibody therapy cut atherosclerotic plaque

17.11.2005


Presentations: American Heart Association Scientific Sessions 2005



Cardiology researchers at Cedars-Sinai Medical Center have found that a single injection of a harmless virus engineered to carry a beneficial, mutant gene enabled animals to manufacture their own supply of the gene’s protein product that protects against plaque buildup in blood vessels. As a result, the amount of plaque was significantly reduced, as was an immune reaction that can lead to plaque buildup and rupture, which can cause a blocked artery and heart attack or stroke.

The researchers will present their findings from this and other studies at the American Heart Association Scientific Sessions 2005 Nov. 13 through 16 in Dallas. They are pursuing a variety of approaches to interrupt the complex processes leading to plaque formation and rupture, seeking new ways to treat and even prevent atherosclerosis.


Apolipoprotein A-I (apo A-I) is a protein that becomes part of HDL, or "good" cholesterol. About 25 years ago, a family in northern Italy was found by Italian researchers to have a mutation in the gene responsible for making the protein. The mutant form (apo A-I Milano) appeared to protect its carriers from cardiovascular disease. In 1994, Cedars-Sinai researchers led by Prediman K. Shah, M.D., director of the Division of Cardiology and the Atherosclerosis Research Center, showed for the first time that intravenous injection of a genetically engineered form of the protein markedly reduced arterial plaque buildup in animals fed a high cholesterol diet. A series of subsequent studies in genetically engineered mice conducted in Shah’s laboratory confirmed the potent effects of apo A-I Milano protein on prevention and reversal of plaque build-up.

Based on the results of Shah’s studies, a clinical trial was conducted in humans with similar results. After five weeks of once-a-week injections, apo A-I Milano significantly shrank plaque in coronary arteries. The protein appeared to actually remove bad cholesterol, even from sites on arteries where plaque had accumulated.

"The initial studies and treatments were based on injection of the apo A-I Milano protein," said Shah. "Now we are using not the protein, but the gene itself. We are putting the gene inside an innocuous virus and injecting the virus so that the body can produce its own supply of apo A-I Milano. One single injection of the gene, carried by the virus, markedly reduces plaque buildup in mice. Advantages of this approach are that we would not need to produce the protein in the laboratory and there would be no need for repeated injections, as there is with the protein. With the animal studies confirming the effectiveness of the gene therapy approach, it may be possible that human trials could begin within several years."

The gene therapy also modulated an immune response that contributes to plaque buildup and rupture. When LDL (bad cholesterol) remains in the bloodstream, it becomes oxidized, which causes the release of a variety of chemicals that damage the blood vessel. In its attempt to repair the injury, the body floods the area with immune system cells called macrophages, which, along with LDL, infiltrate the blood vessel wall.

The result of this injury-repair cycle is the accumulation of plaque – lipids and macrophages covered by a fibrous cap. Plaques with a large lipid core, many inflammatory cells and a thin cap are especially vulnerable to rupture. If a plaque deposit ruptures, debris can block the flow of blood, but the bloodstream also can be blocked by the formation of a blood clot – the immune system’s attempt to heal the rupture.

With a growing understanding of the inflammatory processes involved in the development and threat of "vulnerable" plaque, researchers are looking for ways to limit the local immune response, and in animals receiving the apo A-I Milano gene, macrophage immunoreactivity was reduced by 36 percent and 54 percent, compared to two control groups.

A related study to be presented at the AHA meetings confirmed that transfer of the apo A-I Milano gene is more effective than transfer of the normal apo A-I gene in reducing atherosclerosis and plaque inflammation.

Cedars-Sinai researchers, collaborating with researchers from University of Lund in Sweden, will also describe an immunization technique in which antibodies that specifically target oxidized LDL was injected. An earlier study found that the antibody therapy could prevent plaque buildup, but this work documented that pre-existing plaque could be reduced by up to 50 percent in the animal model.

"The present study suggests that antibody treatment has the ability to rapidly and significantly reduce the extent of already present, advanced atherosclerotic lesions," according to the research team. "Positive immunization with antibodies directed against oxidized LDL isotopes might constitute a future fast-acting therapy for patients at high risk for acute cardiovascular events."

Sandy Van | EurekAlert!
Further information:
http://www.cedars-sinai.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>